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Abstract

Estimating the parameters of filtered sinusoids in noise from a finite number of obser-

vations has wide Air Force, DoD, and commercial interest. Whether constructing models

for time series analysis or estimating the velocity of moving targets, the ability to accurately

estimate the frequency, amplitude, and phase parameters of sinusoids is of paramount im-

portance. This research develops theoretical methods of analyzing filtered sinusoids in

noise and demonstrates their effectiveness on the problem of pulsed sinusoid parameter

estimation for Electronic Warfare (EW) applications. Specifically, within the context of

stochastic modeling, a new linear model, parameterized by a set of Linear Prediction (LP)

coefficients, is derived for estimating the frequencies of filtered sinusoids. This model is an

improvement over previous modeling techniques since the effects of the filter and the co-

efficients upon the noise statistics are properly accounted for during model development.

In addition, the LP coefficients which minimize the squared error between the system

model and the observations, are shown to be maximum likelihood coefficient estimates.

Two methods of estimating the coefficients, based on an iterative least squares (ILS) and

iterative total least squares (ITLS) solution to an over determined system of equations,

are derived and shown to be fixed point mappings of the coefficients within the domain of

allowable solutions. Application of this new linear model and the ILS estimator to the EW

problem shows the ILS algorithm outperforms the current estimation techniques by pro-

viding optimal frequency estimates for multiple, filtered, pulsed sinusoids at lower signal

to noise ratios. In addition, a bound for the estimation error of the LP coefficients and the

frequencies, based on one set of observations, is derived and used to gauge the quality of a

point estimate and establish associated confidence intervals. The results of this research,

whether taken individually or collectively, represent new contributions to the theory of

signal processing and parameter estimation and support the many applications requiring

accurate parameter estimation of both complex and real filtered sinusoids in noise.

xviii



PARAMETER ESTIMATION FOR

REAL FILTERED SINUSOIDS

I. Introduction

1.1 Problem

This dissertation investigates the problem of estimating the parameters of a linear

sum of filtered sinusoids and noise. Accurate estimation of the frequency, amplitude, and

phase parameters of a signal containing a sum of sinusoids in noise is a common task in

many applications in the field of applied science, engineering and statistics (39:407). For

example, in the field of forecasting, it is often desired to decompose a time series into its

main components of trend, irregular, cyclical and seasonal. This decomposition allows a

model of the time series to be constructed for time-series analysis and prediction (23:1-16).

Since a linear sum of sinusoids in zero-mean, normally distributed, white noise can be

used to represent arbitrary time-series data by these components (76), accurate model

construction relies on accurate estimation of the corresponding sinusoidal parameters.

Additionally, various types of radar systems require accurate frequency measure-

ments to determine the relative velocity of a target and to separate moving targets from

stationary objects (79:243-357). It is well known the electromagnetic wave reflected by

an object moving in relation to the radar will be compressed in the direction of motion

(74:464-466). This wave compression results in an apparent change in frequency, known

as the Doppler effect, between the transmitted signal and the reflected signal (77:68-148).

Since the amount frequency change is directly related to the relative velocity of the object,

the object's velocity can be estimated by determining the difference between the carrier

frequency of the transmitted signal and the frequency of the received signal (64:727-728).

Thus, accurate frequency measurements are necessary for obtaining high resolution velocity

measurements and discriminating between moving objects and clutter (62).

1-1



7 Antenna

' ,. Analog :AlParameter Classifier
Antialiasing To __ IF Filters Encoder
Filter Digital

Converter:

Figure 1.1 Electronic Warfare Receiver Block Diagram

1.2 Application

A critical military application which requires accurate sinusoidal parameter estima-

tion involves Electronic Warfare (EW) receivers. The primary function of an EW receiver,

shown by the block diagram in Figurel.1, is to detect a pulsed radar signal, extract and

encode signal information, and pass this data to a classification system for radar system

identification (90:7-35).

The antenna and antialiasing filter are usually designed to intercept radar signals,

modeled by pulsed sinusoids as depicted in Figure 1.2, typically in the frequency range

2 - 18 GHz (90:10). The analog-to-digital converter then digitizes the signal and passes

the resulting discrete-time representation through a set of Intermediate Frequency (IF)

filters. These IF filters limit the number of time-coincident sinusoids processed by the

encoder and increase the Signal-to-Noise Ratio (SNR) of the sinusoids within the filter

passband (90:13). The function of a typical encoder is to extract the sinusoidal parameter

information present in the signal and provide point estimates of these parameters to the

classifier. The classifier then identifies the radar system generating the signal by comparing

these estimates with stored radar system signal descriptions.
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Figure 1.2 Typical Radar Signal: Digital representation of pulsed radar signal sampled at
= 60GHz. Signal parameters: Amplitude: b = 1, Frequency: F,, = 3GHz, Phase:

...r/3.

Thus, accurate estimates of the sinusoidal parameters are critical for both the con-

struction of the classification system and for characterizing the waveformn parameters of

the pulsed sinusoids prior to radar system identification.

1..3 Scope

The primary focus of this dissertation is limited to investigating and developing algo-

rithms which provide accurate point estimates of the parameters of real, filtered sinusoids

in noise. During algorithm development, the amplitudes, frequencies and phases of the

sinusoids are assumed to be deterministic and constant throughout the pulse. Though

recent research has been conducted to estimate the parameters of chirp signals (41),(72),

pulsed sinusoids still describe the majority of radar signals present and will provide a basis

for examining more exotic waveforms in the future (90:10). Additionally, the characteris-

tics of the EW receiver will assumed to be known and capable of being modeled as a finite

impulse response, linear, time-invariant filter. It is the sinusoidal parameters which are

unknown for this application. Furthermore, prior to filtering, the noise will be assumed

to be a zero-mean, normally distributed, uncorrelated, wide sense stationary random pro-
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cess with a known variance. Finally, the number of sinusoids present within any block

of data will be assumed known prior to providing parameter estimates. Identification of

the number of sinusoids present in a block of data is an area of research in its own right

and can be accomplished prior to the employment of parameter estimation techniques

(1), (4), (11), (18), (25), (41), (93).

1.4 Contributions

The results of this research, as delineated in Chapter III and Chapter IV, are high-

lighted via the original contributions below:

Development of the true mathematical model for any digital system required to

estimate the amplitudes, phases and frequencies of filtered sinusoids in noise. Most,

if not all, digital signal processing systems implement a series of filters to condition

the noisy data prior to estimating the sinusoidal parameters. The model developed

as part of this research accounts for the effects of the filter in developing parameter

estimators.

e Derivation of Maximum Likelihood (ML) estimators for the amplitude, phase and

frequency parameters of filtered sinusoids in noise. By correctly accounting for the

correlation in the noise due to the effects of the filter, an accurate model of the

probability density function of the filtered signal is derived. ML estimation techniques

are then used to provide parameter estimators. Simulations indicate that failure

to incorporate the effects of the filter into the data model will lead to suboptimal

parameter estimates.

* Construction of the true general linear model, parameterized by a set of Linear

Prediction (LP) coefficients, for estimating the frequencies of filtered sinusoids in

noise. By properly incorporating the effects of both the filter and the LP coefficients

upon the noise, this new model represents the true linear model for estimating the

LP coefficients and the sinusoidal frequencies from the measurements.

* Application of fixed point theory to the estimation of the coefficients for the true

LP general linear model and development of the Iterative Least Squares (ILS) and
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Iterative Total Least Squares (ITLS) fixed point mapping functions. Simulations

indicate both methods provide minimum variance, unbiased estimates of the LP

coefficients, and consequently, the sinusoidal frequencies, over a wide range of SNRs

(98).

" Derivation of the exact relationship between the ML frequency objective function

and the true LP general linear model for filtered sinusoids. Specifically, the set of LP

coefficients which minimize the squared error defined by the LP general linear model

are shown to provide ML frequency estimates and vice versa.

" Development of an exact ML estimator, termed the Iterative Exact Gradient Descent

(IEGD) algorithm, for LP coefficient estimation. Simulations indicate the LP coeffi-

cients provided by the IEGD algorithm minimize the LP objective function thereby

providing ML estimates of the LP coefficients and, consequently, the sinusoidal fre-

quencies.

" Proof that the two most commonly used methods of estimating the LP coefficients,

termed Iterative Generalized Least Squares (IGLS) and Iterative Quadratic Maxi-

mum Likelihood (IQML), are equivalent to the ILS and ITLS fixed point functional

mappings, not minimization algorithms as widely accepted. Although these two es-

timators do not minimize the LP objective function, simulations indicate they suffer

only a slight decrease in estimation accuracy, particularly at high SNRs.

" Derivation of a novel method for bounding the estimation error of point estimates of

the LP coefficients and consequently, the frequencies, based strictly on one realization

of the measurement vector. Simulations indicate the estimates of the measurement

error can be used to establish confidence intervals for point estimates of both the LP

coefficients and the frequencies.

" Construction of the data model which accurately describes the passage of real sinu-

soids through complex filters. The model shows the complex output of a band-limited

filter can be decimated at twice the rate as the corresponding real output without a

loss in estimation accuracy.
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* Derivation of a complex form of the LP general linear model for estimating the

frequencies of complex, filtered sinusoids in noise. By properly incorporating the

effects of both the filter and the LP coefficients upon the noise, the complex, general

linear model developed represents the true linear model for estimating the complex

LP coefficients (97).

9 Development of a multirate, channelized, EW receiver based on a nonmaximally

decimated, polyphase realization of the Short Time Fourier Transform (STFT). This

patented implementation, (Serial Number 08/816, 951), reduces the required encoder

processing speed requirements by a factor of 16 while simultaneously allowing pro-

cessing of multiple, filtered sinusoids (99).

* Construction of a new and simplified ILS algorithm for estimating the frequency of

a single complex sinusoid in additive white noise. The method developed exceeds

the accuracy of other single sinusoid estimation techniques and can be implemented

using simple vector product operations (96).

e Establishment of an approximate complex model of the data at the output of the EW

receiver. The derivations show the decimated complex output, actually generated

from the sum of real filtered sinusoids in real noise, can be approximately modeled

as being generated from the sum of complex filtered sinusoids in complex noise.

The results of this research, whether taken individually or collectively, represent a major

contribution to the theory of signal processing and parameter estimation. In particular, this

research builds the bridge connecting sinusoidal frequency estimation with LP linear sys-

tem modeling. Finally, this dissertation derives the connection between real and complex

sinusoidal parameter estimation. The estimators constructed as a result of this connection

will significantly improve the operational envelope of the Air Force's next generation EW

receiver.

1.5 Overview

Chapter II reviews the current literature concerning real sinusoidal parameter esti-

mation techniques. Several estimation algorithms are briefly discussed to show that current
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research in the area of parameter estimation has neglected the effects of a filter upon the

sinusoids and noise.

Chapter III derives estimators for the amplitude, phase and frequency parameters of

filtered sinusoids in white noise. After describing the effects of a filter on sinusoids and

noise, a new data model is developed and ML estimators for the sinusoidal parameters are

constructed based on this model. Frequency estimation is then recast as the estimation of

the coefficients parameterizing the LP general linear model. After developing algorithms

for estimating these coefficients, this chapter concludes by introducing a novel method to

assess the accuracy of the coefficient and, consequently, the frequency estimates.

Chapter IV applies these estimation algorithms to a specific EW receiver architec-

ture. This chapter begins by deriving the architecture characteristics and showing how

substantial processing speed reductions can be obtained be employing multirate signal

processing techniques. After modeling both the real and complex forms of the data, the

performance of the estimation algorithms, within the operational envelope of the receiver,

is then documented and shown to provide improved parameter estimates.

Chapter V summarizes the original contributions of this dissertation.

1-7



II. Literature Review: Sinusoidal Frequency Estimation

2.1 Introduction

This chapter reviews the current methods of estimating the frequencies of the sum of

P real sinusoids, s[m], in additive noise, w[m], from M observations y[m], using the model

P

y[m] = E bk cos(27rfkm + 4)) + w[m] = s[m] + w[m] (2.1)
k=1

Here, for 0 < m < M - 1, the amplitudes, {bkJ}, phases, {k}, and frequencies, {fk}, are

deterministic but unknown. Since the amplitudes and phases can be found by a linear

least squares fit to the data once the frequencies are calculated (45), (71), most research

in parameter estimation has focused on developing accurate frequency estimators. This

chapter begins by reviewing several methods of estimating the frequency of a single sinusoid

and concludes by examining the current methods for P sinusoids based on linear predictive

modeling.

2.2 Single Sinusoid Frequency Estimation

In many signal processing applications, the time and frequency components of a

block of data samples can be limited so that only one sinusoid exists throughout the data

block (71). For example, a bandpass filter can be used to limit the frequency range under

observation such that the filtered output can be considered as being from a single sinusoid

(90:21).

One method of estimating the frequency of a single sinusoid is via an amplitude

search of a set of Discrete Fourier Transform (DFT) coefficients followed by a frequency

interpolation based on these coefficients (71)

I [k + Y(k + 1)1 )j(2.2)
1 - +y(k + 1)1 + IY(k)1

Here IY(k + 1)1 and JY(k)! represent the two largest adjacent DFT magnitudes. Since this

technique produces only coarse estimates which are dependent on the block length, further

optimization techniques must be employed to improve estimation accuracy (85).
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An alternative method for estimating the frequency of a single sinusoid employs the

conversion of the real sinusoid to its complex form. That is, the complex form of a sinusoid

in noise can be written as

fi[m] = bje j( Lm +  ) + zZ[mJ = ber"{1 + [m]} (2.3)

Here, w is the radian frequency and i[m] = vR[m] + jvi[m] is a complex random noise

sequence described in Appendix G. One approach for estimating w1, and hence fl, relies

on extracting the instantaneous phase of fi[m]. Since the frequency of an analog signal

can be obtained by differentiating its instantaneous phase (5), a similar relationship exists

in the digital domain when the instantaneous phase of the complex sinusoids is given by

01(m) = w1m+01 . Provided 01(m) > 01(m-1), the frequency can be determined via simple

phase differencing (88). Assuming bi is large relative to the noise sample magnitudes, as

shown in Appendix J, fti[m] can be written as (89)

i[m] = blej(w'1m+0 ' +v 1 - ]) = bie(m) (2.4)

Thus, large SNRs allow 0(m) to be treated as a linear function of the frequency, wj, and

the phase, 01, corrupted by additive noise, vl[in].

This linear phase characteristic has been exploited to provide several simple fre-

quency estimators. One method, termed the Weighted Phase Averaging (WPA) algorithm,

extracts the phase after summing N samples of fi[m] to achieve the new sequence y[m],

(36), (42),
N - 1 N - 1 j w j m n 0 j + -9[r = ilm - n] = N+ EbIm - n] (2.5)
n=O n=O

If bl is large in comparison to the noise sample magnitudes, [m] is approximated as (42)

[m] 2 bje(jwm+0-0) ae - j '(m] = able je(m) (2.6)

Here, the quantities ' = w1[N - 11/2 and a = sin(wjN/2)[sin(wj/2)]- 1 are real numbers

and the variable -y[m] = -1 ' = v[m - n] is random. Thus, for m = N - 1... M - 1,
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the resulting phase difference, z[m] = 0[m] - O[m - 1], has the vector form

z = 27rfll + [N] - 'Gv 1  (2.7)

Here 1 is a vector of ones while G is a sparse matrix defined by

1 fori=j

[Glii={ -1 forj =i+N (2.8)

0 otherwise

If Cv[m] is a zero mean, normally distributed, independent, complex random variable with

variance a.2, then, as shown in Appendix J, z will be a normally distributed random vector

with a mean of 2'rf, 1 and covariance matrix Kz = [Nav/'2bl 2a
2 GG T . As such, an

unbiased, minimum variance estimator for f, is found via linear regression on z as (40:97)

1 T [GGT] - Z

27rlT [GGT] - ' 1

Figure 2.1 shows the accuracy of this estimator varies as a function of N, the SNR,

and the frequency of the sinusoid (10). For N > 1, [m] can be shown to be the output of

a low pass filter of length N (64:447); the improvement in SNR for low frequency sinusoids

is translated into a lower SNR threshold. However, once this threshold is reached, the

estimator with N = 1 outperformed the other values of N tested both as a function

of SNR and frequency. The reduction in accuracy for f > .5 is due to phase wrapping

ambiguities. Provided the SNR is high enough and the frequency range of the input sinusoid

is limited, this estimator will provide accurate frequency estimates and is relatively simple

to implement for real-time applications (17), (47). In addition, a simple modification of

this algorithm allows the rate of change of the frequency to be estimated in addition to

the carrier frequency (12), (34).

An alternative method, termed the Iterative Phase Averaging (IPA) algorithm, uti-

lizes an iterative approach for estimating the frequencies from the phase (85). Let f(k) be

the kth estimate of the frequency and define the variable g [m] = i[m]e- j -m. Then gl [m]
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dent realizations of M = 25 samples of sinusoid in noise. SNR = -10 log10 {o'} and
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satisfies the first order difference equation

e-J -Yk[n + 1] - e'g,[m] = 0 (2.10)

where yk = 1(w, - wk). For an arbitrary window function, t[m], of finite length M, then

M-1

E (t[Mle- - tim + l]e'.) gk[m] = 0 (2.11)

Using the real and imaginary components to find the phase yields the iterative estimator

i Em-1 (t[m +1 ~]imejO
f(k + 1) = f(k) + M= + 1- t[m])(2[me1i2m-7r Em-'= (t [m + 1 ] + t [m]) i[m] e- j-;"  (212

For a complex sinusoid, the optimal window is the parabola given by t[m] = m(M-m) (85).

The main problem involved with using this estimator is obtaining a good initial frequency

estimate. Typically, the initial estimate is obtained from the Fast Fourier Transform (FFT)

bin with the maximum magnitude (85). As shown in Figure 2.2 this algorithm provides

accurate frequency estimates, both as a function of SNR and frequency, only when a good

initial estimate is attained. In addition, provided the noise can be modeled as a zero mean,

complex, normally distributed, uncorrelated random variable, this algorithm will provide

unbiased minimum variance frequency estimates when provided with a good initial estimate

(85).

2.3 Multiple Sinusoid Frequency Estimation

In general, for P real sinusoids in noise, accurate frequency estimation can be difficult.

If the sinusoids are well separated in frequency, the DFT can be used to provide accurate

frequency estimates. However, if the sinusoids are not approximately orthogonal over the

observation interval, DFT processing is ineffective and other techniques must be employed

(45). For these cases, direct maximum likelihood techniques have been shown to provide

accurate frequency estimates (82). These techniques usually require an iterative, nonlinear

multidimensional search in the frequency domain and are too computationally intense to

be implemented in real-time.
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Alternatively, a simpler method for determining the frequencies can be accomplished

using linear predictive modeling techniques (57), (95). Let s[m] be a real signal consisting of

the sum of P real sinusoids, or modes. A 2Pth order polynomial, A(z), which incorporates

these modes can be constructed as (73:484-485)

P 2P

A,(z) = a[0] fJ(1 - zkz-')(1 - z;z-) = Za ]z-P (2.13)
k=1 p=O

For P real sinusoids, the LP coefficients, alp] , are real and symmetric with a[p] = a[2P-p];

the P frequencies present in s[m] are roots to A(z) (8). In the time domain, the polynomial

becomes the Linear Prediction (LP) equation

2P

Ea[pls[m - pJ = 0 (2.14)
p=O

When the sinusoids are corrupted with noise, the LP equation is satisfied only in a sta-

tistical sense. Consequently, several algorithms based on algebraic, iterative filtering, and

maximum likelihood techniques, have been developed to estimate the LP coefficients from

the observations, y[m].

2.3.1 Algebraic Techniques. One technique of identifying the LP coefficients uses

an extended LP model of length L > 2P to account for noise modes (37) and constrains

the LP coefficients to satisfy the Forward-Backward LP (FBLP) requirements (45). The

resulting system of equations, formed by the substitution of y[m] for s[m] in the LP equa-

tion, is then solved using algebraic techniques to obtain the Lh order polynomial A(z).

The P roots of A(z), whose magnitudes are closest to the unit circle, for 0 < f < .5, are

then used to provide the frequency estimates (43).

To construct the system of equations, define a as the vector of L + 1 linear prediction

coefficients, a = [1, aOJT, where the vector a, consists of the truncated form of a and

defined as ao = [a[1] ... a[L]]T. In addition, define the M - L by L + 1 forward observation

matrix, YF, and the backward observation matrix, YB, as

YF]k,l = y[M + 1 - k -/11; [YB]k, = y[M - L - 1 - k + 11 (2.15)
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for k = 1 ... M - L and l = 1..L + 1. Concatenating YF and YB into a single matrix

gives the FB observation matrix YFB (45)

yFB = [Y/YT] = [yblyfb]T (2.16)

where Ylb is the first column of YFB. Finally, define the FB signal matrix, SFB, in a

manner similar to YFB. The resulting system of equations to be solved becomes

Yfbao = -Yfb (2.17)

One algebraic technique for solving this equation is based on a Least Squares (LS) so-

lution. In general, the optimal LS solution requires the rank 2P signal model matrix, S1 b, to

be known exactly (43). Since the components s[m] are not available, the method proposed

by Prony simply substitutes y[m] for s[m] to obtain the LS estimate (73:406-408,491-493)

arT -[Y _ Y Tb] Y!bYfb (2.18)

For a fixed number of measurements, this estimator will provide accurate estimates only

for large SNRs (82). In addition, as the number of observations, M, approaches infinity,

this estimator can be shown to be asymptotically biased (14).

Figure 2.3 shows the estimation accuracy of the LS algorithm for two real sinusoids

in zero mean, independent, normally distributed noise. For these sinusoids, above an

SNR of about 15dB the estimation accuracy improved as L increased from 4 to 14. This

indicates the extra coefficients are adequately modeling noise. However, this improvement

in estimation accuracy comes at the expense of rooting a large-order polynomial.

An alternate algebraic technique for obtaining the LP coefficients from Equation 2.17

is known as the Principal Eigenvalue (PE) method (44), (45), (91). This method provides

an estimate of the LP coefficients by first performing an eigenvalue analysis of the matrix

product [YfbYfb] and then providing the estimate of &, based on this analysis (45), (91).
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Figure 2.3 LS Frequency Estimation Accuracy: MSE calculated at SNR intervals of
.5dB from 500 independent realizations of M = 30 samples of two sinusoids in noise.
Sinusoid Parameters: [b, = 1, fl = .1 = ir/8], [b2 = 1,J2 = .22,02 = Ir/3];
SNR =-101ogl 2o.2; MSE = 100 2 0 "° (f(i)-f) 2 ; Frequencies chosen
from two roots of A(z) with magnitudes closest to unit circle for 0 < f < .5.

The resulting estimate of the LP coefficients becomes

2P
ao ZA-' VLVT (-y7T~b (2.19)

1=1

Here, the vectors v, are the orthonormal eigenvectors of the matrix product [YfbYfb] and

A, is an associated eigenvalue with A, > A 2 .-. >_ A p and {A} - 0 for I = 2P + 1 ... L.

The effect of using this truncated representation is to increase the SNR in the data prior

to solving for &, (44).

Figure 2.4 shows the estimation accuracy of the PE algorithm for two real sinusoids

in zero mean, independent, normally distributed noise. For these sinusoids, above an

SNR of about 8dB the estimation accuracy improved as L increased from 4 to 12. This

indicates the extra coefficients are adequately modeling noise. However, this improvement

in estimation accuracy comes at the expense of rooting a large order polynomial. In

addition, the improvement in the SNR threshold over the LS algorithm is due to the use

of only the four largest eigenvalues in the estimate of do.
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Figure 2.4 PE Frequency Estimation Accuracy: MSE calculated at SNR intervals
of .5dB from 500 independent realizations of M = 30 samples of two sinusoids in
noise. Sinusoid Parameters: [b, = 1, f, = .2, 01 = 7r/8], [b2 = 1, f2 = .22, 2 = 7/3];
SNR = -10Og1 o 2G2 ; MSE = " 1  (f()fp); Frequencies chosen

from two roots of A(z) with magnitudes closest to unit circle for 0 < f < .5.

A final algebraic technique of estimating the LP coefficients is based on a Total Least

Squares (TLS) solution to Equation 2.17(67), (30). That is, with a[0] = 1, the system of

equations to be solved becomes

YFBa = 0 (2.20)

Since y[m] = s[m] + w[m], the signal matrix, Sib, is now corrupted with noise and can be

represented as Yfb = Sfb + Efb where Efb can be interpreted as the matrix of errors (21)

The TLS solution for this over-determined set of equations is based on a Singular Valued

Decomposition (SVD) of YFB, given by YFB = UEVT, so that the estimate for a becomes

1 ZL+1 V(1, 1)vI

a = [ z[t=2+ l v(2.21)
ao /_1=2P+l V1 )('1

where v, is the 1th column of V, the matrix containing the right singular vectors of YFB

and V(1, 1) is the first element of the 1Ih column of V.
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Figure 2.5 TLS Frequency Estimation Accuracy: MSE calculated at SNR intervals
.5dB from 500 independent realizations of M = 30 samples of two sinusoids in noise.
Sinusoid Parameters: [b, = 1, f = .2,€1 = 7r/8], [b2 = 1,12 = .22,02 = 7r/3];2 1500 _fp2

SNR = -10 log10 2a 2 ; MSE = E = 0Frequencies chosen

from two roots of A(z) with magnitudes closest to unit circle for 0 < f < .5.

Figure 2.5 shows the estimation accuracy of the TLS algorithm for two real sinusoids

in zero mean, independent, normally distributed noise. For these sinusoids, above an SNR

of about 6dB the estimation accuracy improved as L increased from 4 to 12. Again, this

indicates the extra coefficients are adequately modeling noise. As with the LS and PE

estimates, this improvement in estimation accuracy comes at the expense of rooting a

large-order polynomial. In addition, the TLS has a lower SNR threshold than either the

LS or the PE algorithm. This is due to the fact the TLS algorithm accounts for the noise

in the observation matrix as well as the noise in the observation vector (67).

2.3.2 Iterative Filtering. Another technique for identifying the LP coefficients

exploits the property that any regular stationary random process can be represented as

the output of a linear system driven by white noise. This allows estimation of the LP co-

efficients to be accomplished using AR modeling techniques (59), (87:411-412). A popular

method for sinusoids is based on the Steiglitz-McBride method of linear system identifi-

cation via iterative filtering (78), (81), (82). The basic technique is to iteratively filter
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the observations, y[m], with the inverse filter, 1/A(pz), derived from the LP coefficient

estimates, to obtain a new sequence yd[mI. Here, p is a convergence parameter, 0 < p < 1,

used to ensure stability of the inverse filter (14), (69). New estimates of the LP coefficients

are then obtained from analysis of this filtered data. Ideally, since the roots of A(z) cor-

respond to the frequencies of the sinusoids present in y[m], the frequency response of the

inverse filter 1/A(pz) can be interpreted as 2P narrow bandpass filters centered near these

frequencies(69). Since the sinusoidal component of the filtered output, Yd[m], consists of

sinusoids at the same frequencies as the input sinusoids, the effect of the iterative filtering

is to increase the SNR at each iteration. The two methods most often used for LP coeffi-

cient identification are the Iterative Filtering Algorithm (IFA) and Parametric Filtering

(PF) Algorithm.

The IFA estimator exploits the LP orthogonality principle to find the coefficient

vector a (87:339). Let y[m] be estimated from 2P previous samples as

2P

=[M] E a[p]y[m - p] (2.22)
p=1

and let elm] be the error between the estimate and the actual value of y[m]. Assuming

a[0] = 1, the coefficient vector, a, which minimizes the mean square error, E{e[m]e[m]},

is found such that the error is orthogonal to the previous observations (87:338-341)

L

E{e[m]y[m - k]} = 0 = E a[lr~y[k - ] (2.23)
1=0

for k = 1 ... 2P and rv,[k - 1] = E{y[k]y[l]}. Since ry11[l] is not known, it too must be

estimated from the data (87:514-577). The IFA estimator uses the Burg algorithm with

p = 1 to estimate r,,[l] and the LP coefficients while ensuring the resulting polynomial,

A(z), is stable(39:161-171,228-229). In addition, an appropriate nonnegative window, such

as the Hamming or Optimal Tapered Burg Window, is often employed to reduce the

dependency of this estimator upon the phase of the sinusoids, (13), (35), (39:231). The

LP coefficients are then iteratively estimated using the filtered data and the algorithm

terminates upon convergence of the LP estimates (38), (39:417-419). This estimator is
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Figure 2.6 IFA Frequency Estimation Accuracy: MSE calculated at SNR inter-

vals of .5dB from 500 independent realizations of M = 30 samples of two sinu-
soids in noise. Parameters: [b, = 1, fi = .2, 01 = ir/8], [b2 = 1, f2 = .22, € = 7/3];
SNR -10log 1 0 2a2; MSE= 10 P E5oo(f.(i) -

relatively simple to implement and can be shown to provide maximum likelihood frequency

estimates for a large number of measurements (39:417-419).

Figure 2.6 shows the estimation accuracy of the IFA estimator for two real sinusoids

in zero-mean, independent, normally distributed noise. For these sinusoids, above an

SNR of about 7dB, use of the Optimal Tapered Burg Window provides the most accurate

frequency estimates over the SNR range of 7dB to 20dB. Regardless of the window used

however, the flattening of the MSE curves indicates this estimator becomes biased at high

SNRs for this small number measurements.

As an alternative to the IFA correlation based approach, the PF algorithm institutes

the sinusoidal constraints, ap] = a[2P - p], and uses an LS methodology for estimating

the LP coefficients(14), (50), (51), (52), (53), (94). Here, the original observations, y[m],

are passed through a causal, infinite impulse response filter which is parameterized by a

set of symmetric scaling coefficients, d[p], to obtain the filtered data yd[m] as

yd[m] = -E d ]p"&[p]yd[M - PI + y[m] (2.24)
p=1
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For P real sinusoids, the scaling coefficients, {dip]}, are calculated as, (53).

1 + p2q
d[q] - Pq + p2-q (2.25)

for q = 1 ... P. To obtain the LS estimate of the LP coefficients, the PF algorithm imposes

the sinusoidal constraints on a via a 2P + 1 by P matrix B so that a = Bat. Here, the

vector a is given by t = [1, a[1] ... a[P]]T is the set of constrained LP coefficients. Defining

Yc as the constrained observation matrix, Yc = YF(d)B = [yclYcI, where yc is the first

column of Yc, yields the PF estimator

&- = - [YT]-' yTyC (2.26)

The LP coefficients are then iteratively estimated using the filtered data and the algorithm

terminates upon convergence of the LP estimates. This estimator is relatively simple to

implement and can be shown to be asymptotically unbiased as M approaches infinity (50).

Figure 2.7 shows the estimation accuracy of the PF algorithm for two real sinusoids

in zero mean, independent, normally distributed noise. For these sinusoids, above an SNR

of about 4dB, use of the convergence parameter of p = .96 provides the most accurate

frequency estimates over the SNR range of 4dB to 15dB. However, the flattening of the

MSE curves indicates this estimator becomes biased at high SNRs when the number of

data points is finite.

2.3.3 Maximum Likelihood. The final technique considered for estimating the LP

coefficients requires minimization of the following objective function, J(a), with respect to

the LP coefficients in a (6), (46), (68)

J(a) = aTyT (AT A)-YFa (2.27)

Here, a = [a[0] ... a[2P]]T while A is the M by M - 2P matrix of LP coefficients

= ~ -l] forl Kk <l+2P

[A]k, , 1 o k<I+2 (2.28)
0 otherwise
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Figure 2.7 PF Frequency Estimation Accuracy: MSE calculated at SNR inter-
vals of .5dB from 500 independent realizations of M = 100 samples of two sinu-
soids in noise. Parameters: [b, = 1, 1f = .2, 01 = ir/8], [b2 = 1, f2 = .22, 02 = r/31;
SNR -10 log1 0 2o2 ; MSE = E2 500 (() - fp)2.

The frequencies found from the LP coefficients which minimize J(a) provide maximum

likelihood frequency estimates (6), (63). Letting a = [a[0] ... a[P]JT and imposing the

sinusoidal constraints via the 2P + 1 by P + 1 matrix B yields the new objective function

J(a) = aTBTyT(AT A)-YFBa (2.29)

The most popular method of minimizing this equation is termed the Iterative Quadratic

Maximum Likelihood (IQML) algorithm (6), (46), (68). This algorithm constructs the

matrix A from the current estimate of a and minimizes J(a) with respect to a by im-

posing the constraint that aTc = 1 (75). Termination of this algorithm is reached upon

convergence of a. Though this algorithm involves an eigenvalue analysis of a P + 1 by

P + 1 square matrix at each iteration, relatively efficient methods of algorithm implemen-

tation have been developed (9), (29), (46). Indeed, this algorithm is currently the most

popular method of estimating the frequencies of multiple complex sinusoids in zero-mean,

independent, normally distributed noise (6), (46), (68), (63).
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Figure 2.8 IQML Frequency Estimation Accuracy: MSE calculated at SNR intervals
of .5dB from 500 independent realizations of M = 30 samples of two sinusoids in
noise. Sinusoid Parameters: [b, = 1, fl = .2, 01 = ir/8], [b2 = 1, f2 = .22,02 = r/31;
SNR = -10loglo 2a 2; MSE 2 _ o "fi •

Figure 2.8 shows the estimation accuracy of the IQML algorithm for two real sinu-

soids in zero-mean, independent, normally distributed noise. For these sinusoids, accurate

frequency estimates were attained for SNRs above about 10dB using an initial estimate of

a = [1, 0... 0 ]T. An improvement in the SNR threshold should be possible if a better ini-

tial estimate of a were used. In addition, the fact that optimal estimates were attained for

all SNRs above the threshold indicates this algorithm can be used as a general frequency

estimator for large SNRs.

2.4 Summary

This chapter reviewed several frequency estimators for P real sinusoids in noise. For

P = 1, relatively simple estimators can be constructed by extracting the phase of the

complex representation of the sinusoid. Simulations show these estimators will achieve

optimal frequency estimates provided the noise is a zero-mean, independent, normally

distributed, complex random variable.
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For P > 1, estimation of the frequencies was recast as the estimation of a set of

LP coefficients and several methods for estimating the coefficients were examined. The

first technique utilized the FBLP constraints to construct a linear system of equations

based on an Lh degree polynomial. Simulations show that above a given SNR threshold,

the resulting LS, PE, and TLS estimators can provide relatively accurate estimates of

the frequencies of sinusoids in zero-mean, normally distributed, uncorrelated noise. This

accuracy comes at the expense of determining the frequencies from a large model order. In

addition, the optimal length of the model depends on both the number of sinusoids to be

estimated and their frequencies. These characteristics prevent this technique from being

used as a general estimator for the frequencies of P real sinusoids in noise.

The second technique employed Iterative Filtering methods to repeatedly filter the

data prior to estimation of the LP coefficients. The LP coefficients for a minimum order

polynomial were then estimated using the IFA and PF methods. Simulations show that

over a range of SNRs, these estimators provide accurate frequency estimates for sinusoids

in zero-mean, normally distributed, uncorrelated noise. However, these accuracies are

dependent on algorithm parameters and previous research indicates these algorithms can be

sensitive to the phases of the sinusoids (13), (35). These limitations prevent this technique

from being used as a general estimator for the frequencies of P real sinusoids in noise.

The third technique used to estimate the LP coefficients was based on maximum

likelihood techniques. By recasting maximum likelihood frequency estimation as a min-

imization of a nonlinear function, J(a), with respect to the LP coefficients, maximum

likelihood frequency estimates could be obtained as roots of a minimum order LP poly-

nomial. The LP coefficients were then estimated using the IQML algorithm to minimize

J(a). Simulations show this estimator provides accurate frequency estimates, above a

given SNR threshold, for sinusoids in zero-mean, normally distributed, uncorrelated noise.

This accuracy comes as the expense of an iterative eigenvalue analysis of a P + 1 by P + 1

square matrix.

This review of the current methods of frequency estimation show that the true linear

model relating the LP coefficients to the frequencies of P real sinusoids in noise has not

been adequately established. This lack of a true model is evidenced by the many methods
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available for estimating the LP coefficients from the data. If the true model existed, the

accuracy of the estimators would be evaluated against the model itself.

In addition, no attempt has been made incorporate the statistical characteristics of

the noise into the construction of the LP coefficient estimators. Each of the estimators

examined in this chapter were evaluated under the assumption the noise was uncorrelated.

However, in general, when analyzing analog signals using digital methods, an antialiasing

filter is used to limit the frequency range of the analog signals under consideration. Any

noise passing through the filter will be correlated by the action of the filter. Accurate

estimation of the LP coefficients will require knowledge of how the noise is correlated.

Finally, there is currently no method to gauge the accuracy of a point estimate of the

LP coefficients, and consequently the frequencies, based strictly on a single realization of

the data. Knowledge that a point estimate is unbiased is inadequate for making decisions

based on the estimation accuracy. A bound on the estimation error must also be reported.

This dissertation will employ stochastic modeling techniques to construct the true

linear model relating the LP coefficients to the frequencies of P real, filtered sinusoids in

noise. Once this model is constructed, estimators for the LP coefficients will be derived

and their estimation accuracies evaluated. A method for bounding the coefficient and

frequency estimation error, based on a single realization, will then be developed and used

to establish confidence intervals for the frequency estimates. The estimators developed

from this research will then be applied to the Air Force's next-generation EW receiver and

evaluated within the receiver's operational envelope.
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III. Theory: Sinusoidal Parameter Estimation

3.1 Introduction

This chapter derives estimators for the amplitude, phase and frequency parameters

of filtered sinusoids in white noise. After carefully deriving a mathematical model describ-

ing the effects of a filter on sinusoids and noise, Maximum Likelihood (ML) estimators

for the sinusoidal parameters are developed based on this model. Estimation of the sinu-

soidal frequencies is then recast as the estimation of the coefficients of a Linear Prediction

(LP) general linear model and algorithms based on fixed point theory are developed for

estimating these coefficients. In this dissertation, the relationship between this general

linear model and ML frequency estimation is established. Moreover, two popular ML-type

methods for estimating the LP coefficients are analyzed in depth and are shown to be fixed

point estimators. This chapter concludes by deriving a method to estimate the variance

of a point estimate of the LP coefficients and, subsequently, the frequencies, based solely

upon a single realization of the measurements and knowledge of the noise variance.

3.2 Filtered Data Model

This section derives a mathematical model for a real sinusoid passing through a

linear, time-invariant filter. With few exceptions, most digital signal processing systems

operate on signals which have been already been passed through various systems. In many

cases, each system can be modeled as a linear time-invariant filter. The model derived in

this section shows how to characterize and account for the effect of a system filter upon

the parameter estimation process and is an original contribution of this research.

3.2.1 Input Signal. Let the sampled signal, x[mI, be the sum of a sinusoidal

signal, v[m], and zero-mean, independent, normally distributed noise, 77[m], so that

x[m] = v[m] + i [m] (3.1)
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Here, vzm] is defined as the linear sum of P discrete-time real sinusoids

P P

v[m] = 1 b'cos(27rfkm + ') = 1 vk[m] (3.2)
k=1 k=1

where the amplitudes, {b%}, phases, {00}, and frequencies, {fk}, are assumed to be deter-

ministic but unknown quantities with constraints b' > 0, 0 < € < 21r, and 0 < fk < 0.5.

Assuming there are Mo samples over which Equation 3.1 holds, in vector form

x = V + 77 (3.3)

where x = [x[M 0 - 1] ... x[O]]T, v = [v[Mo - 1] ... v[0]]T and 1 = [r[Mo - 1] ... 7[0]]T are

Mo-dimensional vectors with real components. The problem is to estimate the amplitudes,

phases, and frequencies of the sinusoids given the observations, x, and knowledge that

the noise vector, 17, is a zero-mean, normally distributed, random vector with covariance

K77 = -21I where I denotes the identity matrix. In general, this simple model can not

be applied directly to most practical systems since the estimation process is typically

accomplished after filtering. Instead, the observations are taken at the output of a known

linear system or filter which induces a known covariance structure on the noise.

3.2.2 Output Signal. Assume the linear system/filter model can be represented

as a finite impulse response, linear, time-invariant filter with N real coefficients, {h[n]} for

n = 0... N - 1. The frequency transfer function, H(ei), as function of radian frequency,

w, is given by (66:193)

N-1

H(eiw) = h[n] -j
" = !H(ejw)Iej (w) (3.4)

n~o

where w = 27rf. With input x[m], for N - 1 < m < Mo - 1, the steady state output y[m]

will be real and can be represented as the sum of the filtered sinusoid, s[m], and filtered

noise, w[m] (66:192-205). That is

N-1 N-1

y[m] = s[mI + w[m] = E h[n]v[m - n] + E h[n]7[n - ml (3.5)
n=O n=O

3-2



Alternatively, since y[m] is defined to be in the steady state, the sinusoidal component of

y[m], denoted s[m], becomes

P

s[m] = E bk cos(27rfkm + Ok) (3.6)
k=1

Here bk = IH(eJw )IbO and Ok = 4I'(wk) + 00 define the deterministic effects of the filter

on the input sinusoidal amplitudes and phases. Now assume there are M samples of the

steady state output with M = M, - N + 1 > 0, and define the Mo by M Toeplitz filter

matrix H as (40:570)

h[o] ... h[N-1] 0 0 ... 0

HoT 0 h[o] ... h[N-l] 0 ... 0HT = (3.7)

0 0

0 0 ... 0 h[0] ... h[N-1]

For m = N - 1 ... Mo - 1, the output, y[m], can be written in vector form as

y=HTx = HTV + HT17 = 8 + W (3.8)

where y is defined as an M-dimensional vector with real components

y = [y[Mo - 11]... y[N- 1]] T

while 8 and w are defined in a manner similar to y. The problem now is to estimate the

amplitudes, {bk}, phases, {Ok}, and frequencies, {fk}, of the sinusoids given the observa-

tions, y. To accomplish this estimation, a model for the observations will be developed

in terms of the frequencies present in the signal and a set of scaling coefficients which are

directly related to the amplitudes and phases.

3.2.3 Model Development. Since M, > M, the columns of H will be linearly

independent, and the noise vector, w, becomes a zero-mean, normally distributed, corre-

lated noise sequence with covariance matrix Kw given by Kw = o.
2HTH (86:56). This
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M by M square matrix is assumed to be nonsingular so that Kw I exists. The observation

vector, y, can now be described as a normally distributed random vector with a mean vec-

tor my = s and a covariance matrix Ky = Kw. Using trigonometric identities (100:457),

Equation 3.5 can be rewritten as

P
y[m] = s[m] + w[m] = b' cos(mwk) - bk sin(mwt) + w[m] (3.9)

k~l

where the scaling coefficients, b' = bk sin(€k) and bc = bk cos(€k), are directly related to

the phases and amplitudes (40:198). That is

tan- 1 lbk/bel if b > 0; be > 0

rr-tan-' Ib /bl ifb >0;bc <0Ck k

7r + tan- ' Ib/bMI if b5 < 0; b < 0 (3.10)

21r -tan - ' l l ' / bcl if bl < 0;bc > 0

bk= /(b) 2 + (b)F 2

Now define A as the deterministic signal matrix as A = [A1 A2] where the M by P matrices,

A1 and A2, are constructed as

cos(w[Mo - 1]) ... cos(wp[M - 1])

A1 = (3.11)

cos(w, [N- 1]) ... cos(wp[N- 1])

while

sin(w[Mo - 1]) ... - sin(wp[Mo - 11)

A2 = n ... (3.12)

sin( [N-1) ... -sin(1p[N-I])

With scaling vectors b, = [b, sin(€t) ... bp sin(€p)]T and b, = [b, cos(€ 1 ) ... bp cos(€p)]T,

a vector form of Equation 3.9 can be written as

y = Alb, + A2b, + w = Ab +w (3.13)
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where b is the vector of scaling coefficients, bT = [bT; bT ] and the 2P columns of A are

linearly independent. This is equivalent to viewing y as a set of observations generated

from the deterministic system Ab corrupted by the colored noise vector w. The problem

of estimating the frequencies, phases, and amplitudes has been transformed into the prob-

lem of estimating the signal matrix A and the scaling coefficients b, and b,. Once the

scaling coefficients have been found, the associated phases and amplitudes can be found

by Equation 3.10.

3.2.4 Section Summary. This section derived the mathematical model for any

system required to estimate the amplitudes, phases and frequencies of filtered sinusoids.

Specifically, once the steady state has been reached, the output of a filter due to an input

consisting of a linear sum of P sinusoids in zero mean, independent, normally distributed

noise can be represented as the output from a deterministic system, Ab, corrupted by

zero mean, normally distributed noise with a covariance matrix, Kw. Estimation of the

sinusoidal parameters has been recast as the estimation of the deterministic system Ab.

Methods for estimating the parameters of this model will be derived in the next section.

3.3 Sinusoidal Parameter Estimation

This section derives algorithms for estimating the amplitudes, frequencies and phases

of filtered sinusoids in noise. After reviewing estimation background in general, this section

covers the principles of maximimum likelihood estimation and employs these principles to

obtain parameter estimators for filtered sinusoids.

3.3.1 Estimation Background. In general, estimating the parameters of P sinu-

soids in noise deals with inferring the values of the unknown parameters from a set of obser-

vations (87:279). That is, from Equation 3.9, M measurements are obtained which contain

the P sinusoids embedded in noise. Since noise is a random quantity, each observation,

y[m], becomes a random variable. Consequently, y becomes a random vector. By defining

as a vector form of the parameters, 0T = [ , T, OT] = [b, ... bp; 1 ... Op; fi ...

an estimator, or function of the data gi(*), can to be constructed which assigns a value to

0, as 9 = gi(y), for each realization of y. Here, b is called the point estimate of 0 (61). As
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a function of a random vector, y, the parameter vector, 6, becomes a random vector with

statistical characteristics defined by the Probability Density Function (PDF) of y and the

form of g2(*). The accuracy of subsequent estimates are dependent primarily on the bias

and variance of the estimates generated by the estimator.

Formally, an estimator gi(*) is said to produce unbiased estimates of the true pa-

rameter vector, 0, if the expectation of 6 is equal to 0 (27:204). That is

E{0} =0 (3.14)

where E{.} denotes the expectation operator. Thus, on average, the unbiased estimator

will provide the true value of 0 (40:15-23). In addition, g,(*) is said to be the minimum

variance estimator if the variance of each component of 6 is less than the variance produced

by any other estimator (40:23). This implies gi(y) is the minimum variance estimator if

K&, - KOi [0] fori5j (3.15)

Here K0 , denotes the covariance matrix of the estimate provided by gi(y) and the term

> [0] is interpreted as meaning the resultant matrix is positive semidefinite (40:44). If a

minimum variance unbiased estimator can be found, on average, the estimates obtained

will be closer to the true value than those provided by any other estimator.

A critical step in the development and analysis of point estimators is to accurately

model the PDF of the data (40:7). Since y is a random vector which contains the parame-

ters to be estimated, the PDF of y is said to be parameterized by 0 for 0 E E and written

as p(y; 0) to show this dependency. Here, E is called the parameter space and contains the

restrictions on the allowable values of 0 (27:201). Furthermore, since the actual value of 0

affects the probability of observing y, selection of the proper PDF describing the data is

critical in deriving a good estimator. From the data model of Equation 3.13, the measure-

ment vector, y, is an M-dimensional, normally distributed random vector with a known

covariance matrix resulting from the system filter matrix, H. The associated PDF of y is

thus parameterized by the scaling coefficients, b, and the frequencies, f f = [fi ... fp]T.
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That is

p(y; 0) = [27r]-SMIKw- -exp[-1(y - Ab)TKwj(y - Ab)] (3.16)
2

where OT = [bT, fT]. The accuracy of any estimator will be strongly dependent on how

well the estimator incorporates this knowledge of the PDF into its development.

3.3.2 Estimation Accuracy. To analyze the performance of any estimator, it is

useful to have a limit or bound which indicates the best estimation accuracy any unbiased

estimator may obtain from the available data (71). In particular, for sinusoidal signals

embedded in zero mean, normally distributed noise, the Cramer Rao Lower Bound (CRLB)

provides a limit on the accuracy any unbiased estimator, b, can attain. Hence

K6 - [.F()] - 1 [01 (3.17)

Here, Y(6) is the Fisher Information matrix defined by (40:44)

[l()]j=-E olnp(y; 0 ) }  E  r[ np(y; 0 )1 [a 1np(y; o) (
1 E o{aoj =E 0i, ]L 1) (3.18)

Since the observation vector, y, is normally distributed with a mean, my, and covariance

matrix, Kw, the Fisher Information matrix can be shown to be given by (40:47)

[.F(6)] 1 = [--i [Kw]- 1 [0J (3.19)

For sinusoids in noise, the CRLB will be a function of the frequencies, phases, and am-

plitudes present in the signal. Figure 3.1 shows the CRLB for frequency estimates, as a

function of the signal frequency, for one and two sinusoids. In Figure 3.1a, for the non-

filtered signal, the frequency estimation accuracy will be relatively constant except for

extremely small (f < 0.001) or extremely high (f > 0.499) frequencies. For the filtered

sinusoid, the estimation accuracy will be optimal within the filter passband. Figure 3.1b

shows a contour plot of the combined CRLB for the frequencies of two sinusoids in zero-

mean, normally distributed, independent noise. For this small number of measurements,
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M = 32, this figure indicates the estimation accuracy of any estimator will decrease dra-

matically for closely spaced sinusoids, (If, - f21 < .02).

3.3.3 Estimator Evaluation. Since the CRLB is a complicated function of the

frequencies, phases and amplitudes of the sinusoids, there is no closed form expression

for determining whether an estimator which will achieve the bound for any arbitrary 0

(39:414) . Consequently, the performance of any estimator must be evaluated numerically

via Monte Carlo experiments (40:164-167). For this dissertation, the performance of an

estimator will be determined by conducting 500 independent trials at each free variable of

interest and determining the combined Mean Square Error (MSE) for each parameter to

be estimated.
MS=1 t, 500

MSE = 500P E E0 -
0P'i

)2 (3.20)
P ---- i----

The resulting experimentally obtained MSE will then be compared to the associated CRLB.

Though various techniques exist to construct estimators based on the PDF given by Equa-

tion 3.16, this dissertation will employ the maximum likelihood estimation technique. The

estimators provided by this technique are relatively simple to develop for signals embedded

in normally distributed noise and produce the approximate minimum variance unbiased

estimates for a moderate number (M > 30) of observations (40:157-198).

3.3.4 Maximum Likelihood (ML) Estimation. The Maximum Likelihood (ML)

estimation technique is based on the assumption that a particular parameter vector, Oi,

generates different sets of observations than any other parameter vector, 0j. Thus, any

given observation vector, y, is more likely to have been generated by one particular param-

eter vector 0i, than any others (60:147). Obtaining an ML estimator involves specifying

the likelihood function and finding the values of the parameter vector which maximize this

function for a fixed observation vector (60:49). In general, when viewed as a function of

0 for a fixed observation vector, the PDF defined in Equation 3.16 is termed a likelihood

function (40:29). Thus, for a fixed observation vector y, the ML estimate for 0 maximizes

p(y; 0). Equivalently, since the natural logarithm is a monotonically increasing function,

the ML estimate for 0 maximizes ln{p(y; 0)}; the log likelihood function.
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CRLB For Frequency
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Figure 3.1 GRLB for Sinusoids in Noise: Bound obtained for one sinusoid in (a)
and two sinusoids in (b). Variance bounded as function of frequency at fixed
SNR of 10dB and block length M = 32. For two sinusoids, contours plotted as
Var = .5[Varjfi} + Varff 2 1]. SNR calculated as SNR = -10 1ogj 0(2o'2 ).

3-9



Furthermore, if a = g(O), where g(*) is an arbitrary k-dimensional invertible function

of 0, the ML estimate for a is given by

&ML = g(bML) (3.21)

This property, known as the Invariance Property of ML estimates, states that any invertible

function of an ML estimate will also produce an ML estimate (40:182).

3.3.5 Parameter Estimators. From the PDF of y given by Equation 3.16, with

Kw assumed known, as shown in Appendix B, the ML estimate for 0 can be obtained by

minimizing the following objective function, J(O), with respect to the parameters in 0:

J(O) = - Ab]T gw, [y - Ab] (3.22)

Minimizing this function with respect to 0 can be accomplished by minimizing with respect

to the scaling coefficients, b, and frequencies, f, individually. For a fixed ML estimate of

7, the ML estimator for b is unique and found as (22), (40:186)

b(ML) = [ATK A]1ATgK l y (3.23)

In addition, the statistical characteristics of b become (60)

E{b(ML)} = b and Kb(ML) = [hTgwlA] (3.24)

This estimator is known as the Best Linear Unbiased Estimator (BLUE) for a fixed set of

frequencies (40:140). The ML estimate for f, on the other hand, minimizes the following

objective function (40:186):

J(f) = yr Y g _ T Kwj A [AT Ki A] - ' ATK ly (3.25)

This objective function, J(f), termed the ML frequency objective function, is a strongly

nonlinear function with respect to f. Since the ML estimates of the scaling coefficients,

b, are defined as a function of the frequencies, f, ML estimation of the frequencies is
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critical for obtaining accurate parameter estimates. The global minimization of this non-

linear function typically involves a computationally intensive search in the P-dimensional

frequency domain and various techniques have been tried to accomplish this search (80).

3.3.6 ML Frequency Estimation. Since the term yTKtwly is a positive number,

minimizing J(f) can be accomplished by maximizing the following objective function

J (f) = yTKw- A[A T KwlA]-1 A T K wlY (3.26)

One convenient method of accomplishing this maximization involves the general method

of iterative gradient ascent

f(i + 1) = f(i) + D-'VJ(f) (3.27)

Here, each element of the gradient is found as

[VJi(f) = [ (f (3.28)

and D is the Hessian of J1(f).

[Dij, = J (f)  = a2J1(f) (3.29)[Dfa, T I ff r ,.j afiafj

In the area of signal processing and numerical analysis, this technique is known as the

Newton-Raphson Technique (40:187) while in the area of pattern recognition, it is known

as the Conjugate Gradient Method (3:274-275). Regardless of the name, as shown Ap-

pendix E, the expression for the gradient becomes relatively simple while the calculation

of the Hessian is computationally intensive. An alternative method of maximizing J1 (f)

can be found by using the direct gradient ascent maximization technique (7)

f(i + 1) = f(i) + o7(i)VJ(f) + (i)[f (i) - f(i - 1)] (3.30)
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Here, the rate of convergence is controlled by the adaptive gain term 77(i) and the adap-

tive momentum term y(i). As with most iterative optimization techniques, there is no

guarantee the algorithm will ever converge. Even if it does converge, there is no guarantee

the global maximum has been attained, especially for nonconvex functions. The solution

achieved will only provide a local maximum and the accuracy of the estimate will depend

greatly on the location of the initial guess.

Figure 3.2 shows the convergence of this iterative technique for one and two filtered

sinusoids. Since the objective function, J1(f), contains more than one local maximum,

the initial estimate was obtained by evaluating JI(f) at equally spaced test points and

choosing the frequency with the largest J1 (f). In both instances, the method of direct

gradient ascent found the global maximum in less than 30 iterations.

Figure 3.3, Figure 3.4, and Figure 3.5 show the estimation accuracy attained using

ML estimates of the parameters of one and two filtered sinusoids. This figure shows the ML

parameter estimates will achieve the CRLB , above threshold, only when the correlation in

the noise is correctly modeled. Assumptions that the noise is uncorrelated (white) leads to

an incorrect model and suboptimal estimates. Since most digital signal processing systems

incorporate an antialiasing filter as a minimum, the noise will always be correlated. The

results of these figures show the fallacy of using a white noise model to construct the CRLB

for filtered signals.

3.3.7 Section Summary. This section derived ML estimators for the amplitude,

phase and frequency parameters of P filtered sinusoids in noise and represents an original

contribution of this research. Specifically, by correctly accounting for the correlation in

the noise due to the effects of the filter, an accurate PDF model of the measurements

was derived. Manipulation of the objective function derived from this PDF showed ML

frequency estimates provide ML estimates of the sinusoidal amplitudes and phases. Sim-

ulations indicate the method of gradient ascent can be used to provide the ML frequency

estimates provided the PDF model accurately describes the correlation in the noise due

to the filter. Failure to incorporate the filter effects in the ML model will lead to subopti-
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Figure 3.2 Maximizing ML Frequency Objective Function: J(f) calculated as
function of frequency at fixed SNR and block length M = 32. Initial estimates made
by choosing f with largest J(f) from uniform samples across filter bandwidth. Fil-
ter Parameters: Center Frequency: f, = .21; Bandwidth: fB = .2; Length: N = 32;
SNR calculated as SNR = -101ogl 0(2a 2).
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Figure 3.3 ML Frequency Estimation Accuracy: MSE calculated at SNR intervals of
.5dB from 500 independent realizations of M = 32 samples of sinusoids in noise. The
incorrect model assumed Kw = o, 21 while the correct model used Kw = ar2 H TH; Fil-
ter Parameters: Center Frequency: f, = .21; Bandwidth: lB = .2- Length: N = 32;
SNR calculated as SNR = 101logl 0 (2o,2); MS E2= E~i= Z(ji
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tervals of .5dB from 500 independent realizations of M = 32 samples of si-
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model used Kw = a2HTH; Filter Parameters: Center Frequency:f, = .21; Band-
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mal parameter estimators. The next section introduces an alternate method for frequency

estimation based on linear prediction modeling.

3.4 Linear Prediction (LP) Modeling

This section develops an alternate method of estimating the frequencies of pulsed

sinusoids based on Linear Prediction (LP) modeling techniques. Specifically, this section

derives the true linear model, parameterized by the LP coefficients, for estimating the

frequencies of P sinusoids in noise and is an original contribution of this research. Using

this model and properly accounting for the effects of the LP coefficients and the system

filter on the noise, estimation of the frequencies is recast as the estimation of the LP

coefficients. This section concludes by developing a bound on the LP coefficient estimation

error.

3.4.1 Theoretical Background. To show the relationship between sinusoidal fre-

quencies and a set of LP coefficients, consider a signal s[m], consisting of the sum of P

real sinusoids. As shown in Chapter II, there exists a set of 2P + 1 LP coefficients, a~p],

such that (8)

2P

Za[ps[m - p) = 0
p=O

Since each frequency of s[m] is a zero of the polynomial, A(z), formed from the LP co-

efficients, the 2P frequencies present in s[m] can be found as roots to A(z). The search

for the P frequencies comprising the sinusoids in s[mI] has been recast as the search for

the associated 2P + 1 LP coefficients. As shown in Chapter II, many algorithms based on

estimating these coefficients have been developed in the past. This dissertation employs

stochastic modeling techniques to derive a new method of LP modeling which is based on

the general linear system model (40:94-94)

t = UO + v (3.31)
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In this model, t is an M-dimensional vector called the measurement vector, 0 is a P-

dimensional vector called the parameter vector, U is an M by P matrix called the obser-

vation matrix and v is called the measurement error vector (60:10).

3.4.2 Construction of the LP General Linear Model. A convenient method

of calculating the LP coefficients can be found by modeling Equation 2.14 in terms of

the general linear system model of Equation 3.31. Since Equation 2.14 must hold for

2P < m < M - 1, a deterministic linear model, parameterized by the LP coefficients in

the vector a = [a[O] ... a[2P]]T, can be constructed as

s[M- 1] ... s[M- 1 - 2P] a[0] 0

Sa = [ : ] (3.32)

s[2P] ... s[0] a[2P]

or equivalently Sa = 0. Here, the M - 2P by 2P + 1 matrix S is deterministic with a

rank of 2P so that a resides in the null space of S (45). Imposing the constraint, a[0] = 1

yields the deterministic general linear model

so = -Soao (3.33)

Here, ao = [a[l] ... a[2P]]T, while so is the first column of S and So is the observation

matrix of the remaining columns of S. The vector, so, can now be thought of as being

generated from the deterministic matrix, -So, so that only 4P + 1 samples are needed

to determine ao exactly. Unfortunately, s[mi] is not usually available and estimates of ao

must be obtained using the noisy measurements y[m].

3.4.3 Noise Effects in the Measurements. To study the affects of noise in the

measurements, assume So is known exactly while the elements in so are corrupted with

additive noise, w[m], so that s[m] = y[m] - w[m] for m = 2P ... M - 1. In this case, the

form of the LP general linear model becomes

yo = -Soao + Wo = so + Wo (3.34)
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Here, w, can be viewed as the error between the measurement vector, y0, and the vector

s, generated by the LP general linear model. The least squares estimate for a, which

minimizes the sum of the squared errors is given as (60:31)

=(L_ [STSo] -'TY
(LS)= - s0  y (3.35)

A basic assumption for this solution is that the impact of the error in each measurement,

y[m], is the same (83:203). When this is not the case, a weight matrix, C-', can be inserted

to provide the Weighted Least Squares (WLS) estimate (60:31),(40:141).

r(LS [ST C-1S,] - 1 T C-1,

(WLS) = - 0 SCY (3.36)

For the data model given by Equation 3.13, the noise is assumed to be zero mean and

normally distributed with covariance matrix Kw. Thus, the measurement vector y, is

normally distributed with the following properties

Mean = my. = -Soao (3.37)

Covariance = Ky. = Kw. (3.38)

As such, the ML estimate for the LP coefficients is given by (60:152-155),(40:185-187)

ao(ML)= - [ST K-oSO]- ' ST K oYo  (3.39)

This estimate is unbiased with a covariance matrix given by (60:110-113)

Kao(ML) = [S0KwVSo] -  (3.40)

If the deterministic observation matrix, So, was known, the ML estimate obtained in

Equation 3.39 would represent the minimum variance, unbiased estimate obtainable from

the measurements. Unfortunately, the observation matrix must also be estimated from the

measurements.
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3.4 4 Noise Effects in the Observation Matrix. The main drawback in using the

LP general linear model to identify the LP coefficients is that the effects of the noise are

embedded in the observation matrix. That is, since s[m] = y[m] - w[m], the observation

matrix itself, S,, is perturbed by the noise. In terms of the true LP coefficients, the LP

general linear model becomes

0 = -Yoa 0 + w, + Woao (3.41)

where the matrices Y and W, are defined in a manner similar to S,. Defining the error as

z(a) = w, + Woao = Wa (3.42)

the perturbed form of the LP general linear model becomes

Yo = -Yoao + z(a) (3.43)

The error vector, z(a), now has statistics which are dependent on the LP coefficients in

addition to the statistics of the noise vector w. To show this dependency, define A as the

M by M - 2P matrix of LP coefficients so that

a[O] ... a[2P] 0 0 ... 0

AT 0 a[0] ... a[2P] 0 ... 0
: : : : 0 0

0 0 ... 0 a[0] ... a[2P]

This matrix has a rank of M - 2P and allows the error vector, z(a) to be written as

z(a) = wo + Woao = Wa = ATW (3.45)

Since w is a zero-mean, normally distributed noise vector with covariance Kw, the error

vector is a zero-mean, normally distributed random vector with a covariance matrix, Kz(a),

given by

Kz(a) = ATKwA = 0.
2ATHTHA (3.46)
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In order to account for this colorization in the covariance matrix, let G(a) be a square

M - 2P matrix derived from the Cholesky decomposition of the error covariance matrix

(73:440-441).

GT(a)G(a) = [HTHA]-' = K-1a) (3.47)

Premutiplying Equation 3.43 by G(a) yields a new form of the LP general linear model

G(a)y. = -G(a)Yoa. + G(a)z(a) = -G(a)Yao + e(a) (3.48)

Here, e(a) is a zero mean, normally distributed random vector with covariance matrix

Ke(a) = I. The form of the LP general linear model now becomes

G(a)Ya = e(a) (3.49)

The estimation of the P frequencies in s[m] from Equation 3.13 has been recast as the

estimation of the 2P + 1 LP coefficients using the LP general linear model derived in

Equation 3.49. The number of LP coefficients to be estimated can be reduced further by

imposing sinusoidal constraints on the coefficients.

3.4.5 Imposition of Sinusoidal Constraints. To properly estimate P real sinusoids

using the 2 P"h order polynomial, A(z), as shown in Appendix C, the LP coefficients must

be constrained to be symmetric about P so that a[p] = a[2P - p] for p = 0... P (8). To

impose this constraint, let a = [a[01,.. . a[P]] be a vector containing the constrained LP

coefficients. Thus, a is related to c via the linear transformation a = Ba. Here B is the

constraint matrix defined as

[ P OP1
B= oT 1 (3.50)

IBp op
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and Op represents a vector of P zeros, Ip represents the P square identity matrix, while

IBp represents the P square 'Backward' identity matrix given by

[IBp = 1 for = P+ 1- (3.51)
0 otherwise

The search for the LP coefficients, contained in a, of a 2 Pt order model has been reduced

to the identification of the P + 1 constrained coefficients contained in a. Imposing these

constraints on the LP general linear model yields

G(a)YBa = G(at)Yca = e(a) (3.52)

Here, Yc is an M - 2P by P + 1 matrix of rank P + 1. Now let y, be the first column

of Yc and let Y, be an M - 2P by P matrix of the remaining columns of Yc. Defining

y,(a) = G(a)y c and Y(ci) = G(a)Y while letting a, = [a[l] ... a[P]]T, an alternate form

of the LP general linear model becomes

yc(a) = -Y(a)a. + e(a) (3.53)

Equation 3.53 represents the true general linear model relating the LP coefficients to the

frequencies present in P sinusoids in noise. The problem now is to estimate the LP pa-

rameters in a,, and, consequently G(a), given the M observations. Before developing any

estimator for the LP coefficients, it is useful to have a bound on the accuracy that can be

obtained from the measurements.

3.4 6 Bounding the Estimation Error. In general, let a be a function of a random

vector 0 so that a = g(0). It can be shown the CRLB for a can be derived from the CRLB

of 0 as (40:45)
K a-Fg(O)1~)] [09~(6)]iT

[ 8 .1 [g80)] > [0] (3.54)
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Again, F(O) is the Fisher Information matrix for 0 while

AI) ag Og(0) (3.55)

.0 ao ,j aoj

For the LP coefficients, the functions relating the P unique coefficients to be estimated to

the corresponding frequencies can be found by expanding the LP polynomial

P P

Eaflz - P = H[z-2 - 2cos(2irfp)z - ' + 1] (3.56)
p=O p=1

In particular, for P = 1

a[1] = -2 cos(21rfl) = g1 (fl) (3.57)

while for P = 2

a[1] = -2 cos(2rfl) - 2 cos(21rf 2 ) = gi (f)

a[2] = 2 + 4cos(21rf 1 )cos(2rf 2) = 92(f) (3.58)

Figure 3.6 shows the CRLB for the LP coefficients for one and two sinusoids. For one

sinusoid, the estimation accuracy will decrease as the sinusoidal frequency approaches .25.

This is to be expected since small changes in the frequency around f = .25 will produce

large changes in the value of the LP coefficient. For two sinusoids, as shown by the contour

plot of Figure 3.6b, the estimation accuracy of the LP coefficients is primarily a function of

the frequency separation of the sinusoids. Consequently, the estimation accuracy decreases

dramatically for If, - f21 < .02. This is to be expected since the CRLB for the frequencies

follows the same general form as the CRLB of the coefficients.

3.4.7 Section Summary. This section derived the true LP general linear model

for estimating the set of P unique LP coefficients generating P sinusoids in noise and is an

original contribution of this research. Specifically, by properly incorporating the effects of

both the filter and the LP coefficients upon the noise, the LP general linear model derived

in Equation 3.53 represents the true linear model for estimating the LP coefficients. Any

other model relating the estimation of the LP coefficients to the sinusoidal frequencies will
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Figure 3.6 CRLB for LP Coefficients: Variance bounded as function of frequency at
fixed SNR of 10dB and block length M = 32. For two LP coefficients, contours found
as Var = .5(Varla[1]} + Varfa[2]}) and plotted as -101ogl 0(Var). SINR calculated
as SNR = -10 1ogl 0(2a 2 ).
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provide suboptimal frequency estimates. Estimating the frequencies has been recast as

estimating the coefficients of the LP general linear model. This derivation naturally leads

to the employment of a Fixed Point concept to determine the LP coefficients. This is one

of the main original contributions of this dissertation.

3.5 LP Coefficient Estimation: Fixed Point Concept

This section derives the estimators to be used for estimating the LP coefficients as

defined by the LP general linear model derived in Equation 3.53. By viewing the optimal

estimates as fixed points in the domain of allowable solutions, this section develops two

alternate methods of estimating the LP coefficients. One estimator is based on an Iterative

Least Squares (ILS) technique and the other on an Iterative Total Least Squares (ITLS)

technique. Both of these estimators provide accurate estimates of the LP coefficients over

a wide range of SNRs and represent original contributions in the area of LP parameter

estimation.

3.5.1 Theoretical Background. The technique to be used for estimating the LP

coefficients from the general linear model of Equation 3.53 is based on the theory of fixed

points and reviewed in Appendix D. To apply this theory to the estimation process, a

nonempty set, S, must be defined along with a function, d, which computes the distance

between any two members of S (33:1). Assuming the properties of a general distance

function hold, then the pair [S, d] is called a metric space (58:21). Now let £ : S --+ S be

a function from a metric space [S, d] into itself. A point Ck E S is called a fixed point of £

provided (2:92)

£(ct) = a (3.59)

In general, there are many requirements which must be satisfied for a fixed point of a

function to exist (33). However, the following two theorems will guarantee the existence of

a fixed point of an arbitrary nonlinear mapping, £, provided the metric space is adequately

defined:
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9 Schauder's Fixed Point Theorem - Let £ be a mapping on a Banach space, S such

that £ : -- S is continuous and bounded and the image of each bounded set has a

compact closure. Then there exists in S a fixed point a of £ (33:152).

e Brouwer's Fixed Point Theorem- Let £ be a continuous mapping on SL(0, 1), the unit

sphere in L-dimensional Euclidean space. If £(a1 ) E SL(0, 1) for all a1 E SL(O, 1),

there exists a fixed point of £, denoted a in SL(0, 1) (33:116).

In this dissertation, the metric space to be employed for estimating the LP coefficients will

be subsets of the general L-dimensional Euclidean space.

3.5.2 Metric Space Definition. Define SL (0, k) as the set of L-dimensional vectors,

a = [(a1 ... aLIT, with a, E R, such that the two-norm of a is finite.

L

Ial 1= -t _ = k < (3.60)
1=1

This implies each component of a is finite. Thus, SL(0, k) is a closed and bounded set

of RL, the Euclidean L space (58). Now define a distance function , d(ki, a,) for any

a ,, ct E SL(0, k) as
L

d(a1 , ,i) = -'(a, - aC,)2  (3.61)
1=1

The pair, [SL(0, k), d], is a metric space. In addition, under this distance metric, RL is a

Banach space (58:112) and SL(0, k) is called compact (58:62). Provided a function £ can

be constructed which maps ai E SL(0, k) into at E SL(0, k), then a fixed point of £ will

exist. The functions to be constructed will be based on the LS and TLS solutions to the

over determined system of equations given by

Y(a)ao = -y:(oa) (3.62)

3.5.3 Iterative Least Squares Fixed Point Mapping.

3.5.3.1 Theory. In general, the LS solution to Equation 3.62 consists of

finding the set of coefficients, a,, such that the sum of the squared terms of the error
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vector, e(a,), defined by

e(a0 ) = Y(ao)a0, + yc(ao) (3.63)

is minimized (83:154). Thus, the optimal solution is given as

ci = arg(min{e(a,)T e(xo)}) (3.64)

This is the same as locating the point gi,(a,) in the column space of Y(a 0 ) which is

closer to y,(Qo) than any other point (83:154). Thus, e(ao) must be perpendicular to the

columns of Y(ao) so that YT(ao)e(ao) = 0 (87:524). Substitution yields the least squares

estimate derived from the observations as

& = - [YT(ao)Y(ao)]' YT(ao)Y(ao) = £LS(ao) (3.65)

This is equivalent to finding the error vector, e(ao), of minimum norm which must be

added to the vector, -y (co), to bring it into the range of Y(ao) (30), (67). To use this

function as an estimator of the LP coefficients, a fixed point must exist.

3.5.3.2 Existence. To show a fixed point exists for the LS mapping function,

£LS, let at E Sp(0, k). The LS mapping of a, yields

j = ZLS(a,) = - LyGT(a)G(a,)Y] -' [YrGT(al)G(a)y] (3.66)

To show aj E Sp(0, k), rewrite G(a) in terms of its SVD as

G(a) = UEVT (3.67)

where U = [U1 ... UM-2p], V = [V1 ... VM-2P] are square unitary matrices and E is an

M - 2P square diagonal matrix containing the singular values of G(a) arranged so that

o, > o-j for i > j. Now, ai = A - 12 where Ai is an eigenvalue of the nonsingular matrix
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ATKwA,. Since, A, > 0 for i = 1 ... M - 2P, the vector, x = G(a)yc, can be written as

M-2P

= - 12  (3.68)
M=1

Here, xT x < cc so that x E Sp(0, k). Now, assuming Y is of rank P, then the matrix

product, Y(a 1 ) = YG(al) is also of rank P. Decomposing via the SVD yields

Y(al) = EDQT  (3.69)

where E = [e, ... eM-2p] and Q = [q, ... qp] are square unitary matrices and D is an

M - 2P by P diagonal matrix containing the nonzero singular values, dp, for p = 1... P,

of Y(aj). Thus

P P

IIl'PLS(a)II = , aj= d-;% Te e X < 1d- zl12 < (3.70)
p=1 p=1

and for any aL E Sp(0, k), then j = £LS(QL) E Sp(0, k).

To show £LS is continuous, define the matrix R as the M by M - 2P matrix with

1 fori=j+p

[Rp],,= 1 for i=2P-p+j (3.71)

0 otherwise

for i = 1...M and j = 1...M- 2P. Thus, for p = 0...P, Rp is of rank M - 2P and so

is the sum of any P, such matrices. The matrix A can now be decomposed as the sum of

these matrices as
P

A = R + Z a[p]Rp = Ro + R(a) (3.72)
p=1

Using this decomposition, the M - 2P square matrix ATKwA can be written as a rational

function of a as

A T KwA = [R. + R(a)]T KW [R. + R(a)] (3.73)
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Because sums, products and inverses of rational functions are also rational functions, then

£LS(a) is a rational function of a (70). Therefore, £LS is continuous everywhere it is

defined. Now, ATKwA is invertible and of rank M - 2P. Since Y, is assumed to be of

rank P, then the matrix product YfT[AKwA]-IY is of rank P so that its inverse exists.

Thus £LS(a) is defined for all a and, as such, is continuous on Sp(O, k)(48:857).

Finally, to show £LS is bounded, the limit as a grows unbounded must exist and be

bounded (70). First, define the set

Sp(O, 1) = {X ER : IIx = 1} (3.74)

and let c = O3x for 0 E R. Then

£LLS(X) =- {YT [( 0 + R( X)T) Kw ( .+ R(x)) K'c

0 Y! ' + R(x)T) Kw , + R(x) )I_ -1 (3.75)

Taking the limit as 3 approaches infinity yields

lim £LS( 3X) = - (Yf[RT(x)KwR(x)]-IYc)- 1 yT [RT( x)KwR(x)]y c = LLS,":(X)

(3.76)

Since R(x) is still of rank M - 2P, then £LS,,(, 3 X) is simply the solution to the weighted

least squares problem and is therefore a finite vector with IILLs.,(OX)1 2 < o. Finally, let

f(3) = max £Ls(PX) (3.77)
XESp(O,1)

As shown in (70), f(,3) is a continuous function with

lim f(,3) = max £LS.(X) < 00 (3.78)

XESP(Ok)
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Since f(03) is a continuous function bounded at infinity, so is its norm and the supremum

of f(3) is finite. That is (70)

sup Il£Ls(a)I = sup 1f (0)11 < 0 (3.79)
Ca a

Thus, the supremum of the infinity norm of £LS is finite and maps the bounded set

$p(O, k) C R P into itself. Finally, since £LS is a continuous function that maps a convex

compact set into a convex compact set, then via Schauder's Theorem (33:152-153), there

exists a fixed point such that a E Sp(0, k) such that £LS(a) = a. The fixed point obtained

using an iterative form of the LS function of Equation 3.65 will become the estimate of

the LP coefficients.

3.5.3.3 Application. From the true system model, where a indicates the

true LP coefficients,

y,(ao) = -Yc(cto)ao + e(ao) (3.80)

Clearly, the quantity -yc(ao) + e(ao) is in the range of Y(ao). If the least squares

estimate, &, is given by Equation 3.65, substitution yields

&. = [Y!(ao)Y(ao)] - Yf(ao) [Y(ao)a0 - e(a,)] (3.81)

For &, to be equal to ao, the error vector must be orthogonal to the columns of Y(ofo).

In this case, the true values of the LP coefficients, &,, would be a fixed point of the Least

Squares mapping

Cto = £LS(ao) (3.82)

Now consider the iterative form of the LS mapping function LILS. From the system model,

at iteration i,
- yo( t) + e(ci) = Y (ai)ai (3.83)

The Iterative Least Squares (ILS) estimate for the LP coefficients is found from Equation

3.65 as

-[Y.:(a<)Y(a)] (Cki)Y(Cki) = £ILS(C4) (3.84)
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At each iteration, the squared error, calculated as

= e (co)e(ac) (3.85)

is minimized with respect to the current LP coefficient estimate. When a- I = at', the

error vector, e(a') is orthogonal to the columns of Y(a') and ao = £ILS(Cki). A fixed

point has been reached and the estimate of the LP coefficients becomes &, = &o.

3.5.3.4 Simulations. Figure 3.7 shows a typical convergence of the ILS

algorithm for one and two filtered sinusoids. In both cases, the center frequency of the filter

was used to provide the initial LP estimates and less then ten iterations were required for

location of the fixed point. In addition, the fixed point located does not coincide with the

LP coefficients given by the minimum of the error surface. Figure 3.8 shows the estimation

accuracy of the ILS fixed point mapping for a single sinusoid as a function of SNR and

frequency. Figure 3.8a shows the ILS algorithm produces accurate frequency estimates

only when the LP general linear model incorporates the effects of the filter upon the

noise. Assumptions of uncorrelated (white) noise produce an incorrect model. In addition,

provided the correct model is used, the accuracy of the estimator is relatively independent

of the method of initialization above the SNR of about 3dB. For lower SNRs, the algorithm

becomes sensitive to the initial LP estimates and the threshold can be extended to about

0dB using the filter center frequency to provide initial estimates. Figure 3.8b, shows the

frequency estimation accuracy of the ILS fixed point estimator across the entire range of

frequencies for a sinusoid in zero-mean, normally distributed, uncorrelated noise. Using the

simple LS estimate as the initial estimate, this figure shows the ILS fixed point algorithm

provides optimal frequency estimates except for extremely low (f < .01) or high (f > .49).

frequencies.

Figure 3.9a shows the accuracy of the ILS fixed point estimator for the two widely

spaced sinusoids in zero-mean, independent, normally distributed noise. Using an initial

estimate obtained from the general LS solution, this figure shows the frequency estimates

obtained as a result of the ILS estimator are near optimal for SNRs above threshold. As

with a single sinusoid, Figure 3.9b shows the ILS algorithm produces accurate frequency
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estimates only when the LP general linear model incorporates the effects of the filter upon

the noise. Assumptions of uncorrelated noise produce an incorrect model and, conse-

quently, suboptimal estimates. For two sinusoids however, initializing the algorithm with

LP coefficients obtained near the center filter center frequency produced accurate estimates

at a slightly lower SNRs than those produced by a simple LS initial estimate.

The ability to estimate the frequencies of both widely and closely separated sinusoids,

either in independent or correlated, normally distributed noise, imply the ILS estimator

can be used as a general frequency estimator.

3.5.4 Iterative Total Least Squares Fixed Point Mapping.

3.5.4.1 Theory. In forming the LS solution, the noise in the observation

matrix, Y(co), was ignored. The LS solution simply found the vector of minimum norm

which must be added to the vector -y,(ct,) to bring it into the range of Y(a,0 ). The TLS

solution attempts to account for the noise in the observation matrix, Y(ao) in addition to

the noise in the y,(cio) (21),(67),(87:533-538). First, Equation 3.62 can be rewritten as1
[y'(a)Yc(a)] [ I O= YI(a)o (3.86)

The TLS solution for a seeks the matrix, E(cQ), of minimum Frobenius norm such that

the matrix sum, [Yc(a) + E(a)], is rank deficient (21), (67). Decomposing Yc(at) via the

SVD yields

Yc(a) = U(a)E(a)VT (C) (3.87)

Here, U(a) and V(a) are unitary matrices which can be written in terms of their column

vectors as

U(W) = [ul(C)... UM_2P(a)] with ui E RM- 2P (3.88)

V(cr) = fv(a) ... Vp+i(a)] with vi E R P +1  (3.89)
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Frequency Measurement Accuracy
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Figure 3.8 ILS Frequency Estimation Accuracy-One Sinusoid: MSE calcu-
lated from 500 independent realizations of block length M = 32. Ten itera-
tions allowed for convergence. The incorrect model assumed Kw = or21 while the
correct model used Kw = or2HTH. SNR calculated as SNR = -101ogl 0 (2a2 );
MSE ' E50500 (f[i] - fl).
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Combined Frequency Measurement Accuracy
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Figure 3.9 ILS Frequency Estimation Accuracy-Two Sinusoids: MSE calcu-
lated at SNR intervals of .5dB from 500 independent realizations of M = 32 sam-
ples of sinusoids in noise. The incorrect model assumed Kw all2 while the
correct model used Kw = a2HTH. SNR calculated as SNR = 10 log10 (2a 2 );
MSE = ,6 E2=1 E50f(j(i) - fp) 2 .

3-35



In addition, E(a) is an M - 2P by P + 1 diagonal matrix of the singular values of Yc(a),

denoted Ori for i = 1 ... P + 1, arranged so that a, > o02... _ ap+l > 0. The TLS solution

for a is given by the mapping function, £TLS, as (86:534)

Vp 1 (a) = £TLS(a) (3.90)
a (a ) ,p+l

Provided V(a)l,p+l 5 0, this solution is unique and provides the set of LP coefficients

associated with the matrix of minimum Frobenius norm, E(a) such that (21)

- y,(a) + e(a) E Range{Y1(a) + E(a)} (3.91)

In order to use this estimation technique for the LP coefficients, a fixed point must exist.

3.5.4.2 Existence. To show a fixed point exists for the TLS mapping

function, let Sp+1(0,1) : {a E RP+laTa - 1} and let al E Sp+1(0,1). The solution

provided by £TLS(QL) is the right-most singular vector

a- V(tl)l,p+l (3.92)

Here, V(al)1 ,p+l is the first element of the P + 1 column of V(al). Since this solution

can be scaled by any constant without changing the zeros of the LP polynomial A(z), a

modified form of the TLS mapping becomes

atj = Vp+j(a 1 ) = £TLS(aN) (3.93)

Since vp+i(al)Tvp+l(al) = 1, then aj = £TLS(ag) E Sp+l(0, 1).

Now, to show £TLS is continuous, the TLS solution was found via the SVD of the

matrix product G(a)Yc. Since G(a) is a square M - 2P nonsingular matrix and Yc is

and M - 2P by P + 1 matrix of rank P + 1, then vp+l(a) exists for all a. Furthermore,

this solution is the same solution as the TLS solution of

Y T [AT KwA] - 1 Yca = 0 (3.94)
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This function is a rational function of a,, and since sums, products and inverses of rational

functions are also rational functions, then £TLS(*) is continuous everywhere in its domain

(48:857). Since the TLS solution exists for all a E Sp+1 (O, 1), then £TLS(a) is continuous

on Sp+1(0, 1). Thus, via Brouwer's Fixed Point theorem, there exists an a E Sp+1 (0, 1)

such that a fixed point exists (33:116). The fixed point obtained via an iterative form of

the TLS solution will become the estimate of the LP coefficients.

3.5.4.3 Application. From the true system model, where a indicates the

true LP coefficients

Y(a)ao = -y(a) + e(a) (3.95)

Again, the vector -y(a) + e(a) is in the range of Y(a). Rearranging terms gives

[Yc(a) - Wc(a)I a = 0 (3.96)

Decomposing Yc(a) as the SVD yields the TLS estimate as

= vp+1(a)a :- (3.97)
V(ahi,p+i

For & to be equal to a, the matrix, -Wc(a), must be of minimum Frobenius norm. In

this case, the true values of the LP coefficients become a fixed point of the TLS function

a = £TLS(a) (3.98)

Now consider the iterative form of the TLS solution. From the system model, at iteration

i, the model yields

Yc(a')a' = e(a') (3.99)

The Iterative Total Least Squares (ITLS) estimate for the LP coefficients is found via the

mapping function, £ITLS, as

a +
_a- VP ,Pai - £ITLS(a') (3.100)
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At each iteration, the squared error is calculated as

J(a) = eT(&)e(ai) (3.101)

When a+1 = a, the noise matrix, W(a') is of minimum Frobenius norm and the fixed

point has been reached so that &k = £LITLS(&i).

3.5.4.4 Simulations. Figure 3.10 shows a typical convergence of the ITLS

algorithm for one and two filtered sinusoids. In both cases, the center frequency of the filter

was used to provide the initial LP estimates and less then ten iterations were required for

location of the fixed point. In addition, the fixed point located does not coincide with the

LP coefficients given by the minimum of the error surface. Figure 3.11 shows the estimation

accuracy of the ITLS fixed point mapping for a single sinusoid as a function of SNR and

frequency. Figure 3.11a shows the ITLS algorithm produces accurate frequency estimates

only when the LP general linear model incorporates the effects of the filter upon the

noise. Assumptions of uncorrelated (white) noise produce an incorrect model. In addition,

provided the correct model is used, the accuracy of the estimator is relatively independent

of the method of initialization above the SNR of about 3dB. For lower SNRs, the algorithm

becomes sensitive to the initial LP estimates and the threshold can be extended to about

0dB using the filter center frequency to provide initial estimates. Figure 3.11b, shows the

frequency estimation accuracy of the ITLS fixed point estimator across the entire range

of frequencies for a single sinusoid in zero mean, normally distributed, uncorrelated noise.

Using the simple LS estimate as the initial estimate, this figure shows the ITLS fixed point

algorithm can provide optimal frequency estimates except for extremely low (f < .01) or

high (f > .49). frequencies.

Figure 3.12a shows the accuracy of the ITLS fixed point estimator for the two widely-

spaced sinusoids in zero-mean, independent, normally distributed noise. Using an initial

estimate obtained from the general TLS solution, this figure shows the frequency estimates

obtained as a result of the ITLS estimator are near optimal for SNRs above threshold.

As for a single sinusoid, Figure 3.12b shows the ITLS algorithm produces accurate

frequency estimates only when the LP general linear model incorporates the effects of the
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filter upon the noise. Assumptions of uncorrelated noise produce an incorrect model and,

consequently, suboptimal estimates. For two sinusoids however, initializing the algorithm

with LP coefficients obtained near the filter center frequency produced accurate estimates

at a slightly lower SNRs than those produced by a simple TLS initial estimate.

The ability to estimate the frequencies of both widely and closely separated sinusoids,

either in independent or correlated, normally distributed noise, imply the ITLS estimator

can be used as a general frequency estimator. However, this estimator requires an SVD of

the M - 2P by P + 1 observation matrix at each iteration.

3.5.5 Section Summary. In this section, two methods, based on fixed point

theory, were derived for estimating the coefficients of the LP general linear model. One

method, termed the ILS algorithm, is based to an iterative least squares solution on an

over-determined system of equations while the other method, coined the ITLS algorithm,

is based on an iterative total least squares solution. Simulations indicate both methods

provide minimum variance unbiased estimates of the LP coefficients, and consequently, the

sinusoidal frequencies, over a wide range of SNRs. All other factors being equal, the ILS

method would be preferred over the ITLS method since the ITLS algorithm requires an

SVD of a M - 2P by P + 1 matrix at each iteration. Application of fixed point theory

to the estimation of the LP coefficients and development of the ILS and ITLS fixed point

mapping functions is an original contribution of this research. The next section relates the

estimates found by these methods to the ML estimates of the LP coefficients.

3.6 LP Modeling/ ML Frequency Estimation Relationship

This section derives the exact relationship between the true LP general linear model

and ML Frequency estimation. Specifically, this section will show the LP coefficients,

defined by the general linear model of Equation 3.53, will provide ML frequency estimates

for filtered data provided the two-norm of the model error is minimized. This derivation,

establishing an exact relationship between ML frequency estimation of filtered sinusoids

and the LP general linear model, is an original contribution of this dissertation.
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Frequency Measurement Accuracy
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(a) Sinusoid Parameters: [bo = 1,fj = .192, 0* = ir/3], MSE at .5dB SNR intervals.
Filter Parameters: Center Frequency: f, = .21; Bandwidth: lB .2; Length: N = 32.
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(b) Sinusoid Parameters: [bo = 1, 0' = ir/3], SNR = 10dB.
MSE at .005 frequency intervals.

Figure 3.11 ITLS Frequency Estimation Accuracy-One Sinusoid: MSE cal-
culated from 500 independent realizations of block length M = 32. Ten itera-
tions allowed for convergence. The incorrect model assumed Kw = o21 while the
correct model used Kw = a2 HTH. SNR calculated as SNR = -10log 10 (2a 2 );
MSE=-L E0- (f, [] -1.
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Combined Frequency Measurement Accuracy
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Figure 3.12 ITLS Frequency Estimation Accuracy-Two Sinusoids: MSE cal-
culated at SNR intervals of .5dB from 500 independent realizations of M = 32
samples of sinusoids in noise. The incorrect model assumed Kw = a 21 while the
correct model used Kw = a 2 HTH SNR calculated as SNR = 10 logl10(2a~2 );
MSE = ' E'= E0 Z (p(i) _-p2
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3.6.1 ML Objective Function Redefined. From Equation 3.25, to provide ML

frequency estimates, the objective function J(f) must be minimized with respect to f.

J(f) = yTKw_y- KwlA[A r Kw-A]-A r K wly

To minimize this ML frequency objective function , consider a vector space interpretation

of the minimization problem and assume that y has length M > 2P. From Equation 3.13,

since A is an M by 2P matrix with 2P linearly independent columns, the column vectors

of A, denoted

A = [AlA2,.... A2P] (3.102)

span a 2P dimensional subspace, V1, of the real vectors, RM. As such, there exists an

M - 2P dimensional orthogonal subspace, denoted V2, which is spanned by the column

vectors in the matrix A,

A = [a1, a2, ... aM-2P] (3.103)

For any vector 0 E V and y E V2 then OyT7 = 0 (83:132-152). In particular, ATa2 = 0 for

i = 1... 2P and j = 1... M - 2P. Now let F be an M by M invertible matrix and define

the linear transformation upon the two sets of basis vectors as ?i = FA1 , where Oi E V1 ,

and = F-Ta, where -, E V2. In matrix form,

"] = [¢ 1  0"2P] = F[A1 ... A2P] = FA (3.104)

F = [71"" 7M-2P] f-T[a, ... aM-2P] = F-TA (3.105)

The columns of TI form a basis for V while the columns of r form a basis for V2 (26:92).

The projection of any vector z E RM into V1 and V2 can be written in terms of the matrices

IF and IP as (83:156),(73:46-47)

z, = 4 [,pr 1 ] - ,IQTz; for z1 E V (3.106)

Z2 = r [rF] -1 rTz; for z2 E V2 (3.107)
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The signal energy, E, defined by the vector two norm 1lz112 for z E RM, is projected

orthogonally into each subspace (26:181-226) as E = zTz = E1 + E2 where

El = z zi = zT ip [ Ijp] -1 qITz = zT [I - r(rFTr)-rT] Z (3.108)

E2 = Z2 = T [IZ- =T 1 )-,T] Z (3.109)

For a fixed energy E, minimizing E1 maximizes E2 and vice versa. Now let F be defined

by the Cholesky decomposition of the noise covariance matrix so that

Kwx = FT F (3.110)

The ML frequency objective function, J(f), can then be written as

J(f) = YT FT Fy - yT FTFA(AT FT FA)- AT FT Fy (3.111)

For z = Fy, and IQ = FA, an alternate form of J(f) becomes

J(f) = zTz - ZTfppTq]-IpTZ (3.112)

Factoring the vector z and employing Equation 3.109 yields

J(f) = ZT [I - p(ITp)-1,j] Z = zTr(rT r)-lr z (3.113)

Minimizing the ML frequency objective function, J(f), is equivalent to minimizing E 2,

the energy of the signal projected into V2. From Equation 3.109, since r = F-TA, this

minimization can be written in terms of the basis vectors a in A as

J(A) = yTFTF-TA(ATF-lF-TA)-lATF-IFy = YTA(ATKWA)-ATY (3.114)

Minimizing the ML frequency objective function defined by Equation 3.25 with respect

to f has been recast as minimizing Equation 3.114 with respect to the basis vectors in
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the matrix A. Proper selection of these basis vectors will prove critical for obtaining a

simplified estimator.

3.6.2 Determination of the Basis Vectors. To determine an optimal set of basis

vectors, ak, consider the LP model of Equation 2.14. Substitution of s[m] = bk cos(wkm + Pk)

and expanding yields

P 2P

Z a[p]bk {cos(wk[m - p]) cos(¢) - sin(wk[m - p]) sin(€k)} = 0 (3.115)
k=1 p=O

Since Equation 3.115 must hold for all wk and 2P < m < M - 1, using the substitution,

b' = bk sin(ok) and bM = bk cos(Ok), gives the property

2P

E a[p] cos(w [m - pl) = 0 (3.116)
p=O

2P

Ea[p] sin(wk [m - p]) = 0 (3.117)
p=O

Now define the vector of k zeros as Ok and the M-dimensional vector ak as

aT  [OT, a[0] ... a[2P], 0 2 P k-.l] (3.118)

for k = 0... M - 2P - 1. Since the form of the basis vectors for V can be written as

A1 = [cos(21rfj[Mo - 1]) ... cos(27rfi[N - 1])]T (3.119)

Ap+, = -[sin(2rf,[Mo - 1]) ... sin(27rf/[N - 1])]T (3.120)

for i =1... P, then aTj = 0 for j = 1 ... 2P. The M - 2P vectors a, are orthogonal to

the columns of A. Furthermore, employing these vectors as the columns of A yields the

LP coefficient matrix defined by Equation 3.44. The M - 2P columns of A are linearly

independent and thus form a basis for V2 , the subspace orthogonal to V1. In addition, each

column of A is derived from a single vector a so that J(A) can be written as

J(a) = YT A(AT KWA)-ATY (3.121)
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Minimization of J(f) with respect to f has been recast as a minimization of J(a) with

respect to a. The LP coefficients which minimize Equation 3.121 provide ML frequency

estimates (6). Furthermore, via the invariance property of ML estimators, the a which

minimizes J(a) is the ML estimate of the LP coefficients(40:185). As shown in the next

section, this ML estimate of the LP coefficients can also be obtained from the LP general

linear model.

3.6.3 Relationship to LP Model. To show the relationship between ML frequency

estimation and the LP general linear model, let G(a) be the square M-2P matrix obtained

from the Cholesky decomposition of the matrix [ATKwA] - 1 . The ML frequency objective

function can now be written as

J(a) = yTAGT(a)G(a)ATy (3.122)

Employing the M - 2P by 2P+ 1 matrix of measurements, YF, and imposing the sinusoidal

constraints, so that a = Ba, yields ATy = YFa = Yca. Thus, an alternative form of

Equation 3.121 becomes

J(a) = aTyTG(a)TG(a)Yca (3.123)

By defining the error vector as e(a) = [e[M - 1] ... e[2P]T and constraining o[0] = 1

yields

e(a) = G(a)Yca = y(a) + Y(a)a0  (3.124)

This equation is identical to the LP general linear model given by Equation 3.53. By prop-

erly incorporating the effects of the filter coefficients and the LP coefficients in developing

the LP general linear model, this derivation shows the exact relationship between the LP

coefficients and ML frequency estimates. The set of LP coefficients which minimize the

squared error defined by the LP general linear model will provide ML estimates of the

frequencies. Furthermore, via the invariance of ML estimators, the LP coefficients which

minimize the squared error are the ML estimates of the coefficients.
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3.6. 4 Section Summary. This section derived the exact relationship between the

ML frequency objective function for filtered sinusoids and the LP general linear model

and is an original contribution of this research. Specifically, this section showed the set

of LP coefficients which minimize the square error defined by the LP general linear model

will provide ML frequency estimates and vice versa. The next section will derive an ML

estimator for the LP coefficients and derive the relationship between this estimator and

the ILS and ITLS fixed point estimators.

3.7 LP Coefficient Estimation:Objective Function Minimization

In this section, after deriving a method, termed Iterative Exact Gradient Descent

(IEGD), for obtaining exact ML frequency estimates using gradient descent algorithms

to minimize the constrained form of the LP objective function, J(a), approximate ML

estimation techniques are examined. Specifically, this section will show the LP coefficients

found via the ILS fixed point mapping function are exactly equivalent to the Iterative

Generalized Least Squares (IGLS) approximate ML estimator developed in (31),(32)(70).

In addition, the LP coefficients found via the ITLS fixed point mapping function will be

shown to be exactly equivalent to the well known Iterative Quadratic Maximum Likelihood

(IQML) approximate ML estimator proposed in (6), (29), (30), (68), (63),(75). The proof

of the equivalence of these estimators is an original contribution of this dissertation and

correctly casts the IGLS and IQML estimators as fixed point mappings.

3.7.1 Iterative Exact Gradient Descent (IEGD). From the form of the objective

function J(a), as defined in Equation 3.123, the interpretation as the the familiar squared

error objective function is self evident

J(ct) = e(a)Te(a) = CJYcG(Co)TG(a)Yca (3.125)

Minimizing J(a) with respect to a becomes a P + 1 dimensional search for an estimate,

&, such that

& = arg{min(a'YJG(a)T G(a)Yca)} (3.126)

a
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The a which minimizes J(a) will provide ML estimates of the frequencies and the LP

coefficients.

There are many methods for minimizing J(a) with respect to a. The method devel-

oped in this dissertation, termed the Iterative Exact Gradient Descent (IEGD) algorithm, is

based on an iterative gradient descent algorithm of the general form (15:140-141), (40:187),

a'+1 =ai - [D- 1a J() j (3.127)

where the vector aJ(a)/Oa is the P + 1 dimensional gradient vector defined as (40:187)

[OJ(cr)] =J(a) (3.128)

act + aa[i]

In addition, D is the Hessian of J(a) with (40:187)

0- J(Q) (3.129)

As shown in Appendix E, the gradient is relatively simple to implement while the Hessian

is a bit more complicated. Again, as with most iterative optimization techniques, there

is no guarantee the algorithm will ever converge. Even if it does converge, there is no

guarantee the global minimum has been attained. The solution achieved will only provide

a local minimum and therefore the accuracy of the estimate will depend greatly on the

location of the initial estimate.

Figure 3.13 shows typical solutions for the LP coefficients obtained using the IEGD

algorithm. In this figure, the results of the ILS fixed point estimator were used as an

initial guess for the IEGD algorithm. This figure shows the IEGD algorithm does indeed

find the minimum of J(a) and, consequently, the ML estimate of the LP coefficients and

frequencies. The main drawback to the IEGD algorithm, when compared to the ILS and

ITLS fixed point algorithms, is the added complexity of computing the Hessian at each

iteration. Typical methods for reducing this complexity treat the matrix ATKWA as a

constant, impose a constraint on a and perform the minimization with respect to this
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constraint (6),(9), (29), (31),(32),(75). The two estimators based on this technique have

been termed the IGLS and IQML estimators.

3.7.2 Iterative Generalized Least Squares (IGLS). One method of performing an

approximate minimization is to constrain ci[O] = 1 and perform a gradient descent using

Equation 3.127 with the matrix product, C(ao) = ATKWA, treated as a constant. For

this constraint, the objective function becomes a function of the P remaining terms in ao

J(a.) = y'[C(a')]-'y, + 2yr[C(a')]-'Yao + aYT[C(a')]-Yoao (3.130)

where C(ai,) is derived from the previous estimate of ato. Taking the gradient and evalu-

ating at ao, yields the general iterative gradient descent algorithm

a0+ 1 -a _ 2D-1 T -1  Co)Jco + ydTUcIcQo)-Yc} 311ai+1- c' - D-1(3.131)

Employing the Hessian matrix, D, yields

D = 2Yr[C(ao)]-'Y (3.132)

Thus, the final form of this iterative gradient descent algorithm becomes

Ctio+1 = - { yT[C(a ,o)1-yC}1 Y7[C(a ,) 1 yC (3.133)

Since [C(a'o)]- ' = G(ao)G(ao), and Y(ao) = G(ao)Y, substitution yields

Ci+l i -

- - [Y T (a0)Y(at) ' (o)y(lo) (3.134)

The approximate minimization of the ML objective function is identical to the ILS fixed

point mapping function, £RILS(a), defined in Equation 3.84. This derivation is an orig-

inal contribution of this dissertation for it establishes the connection between the IGLS

algorithm developed in (31), (32) and (70) to the general method of gradient descent

minimization and correctly casts the IGLS algorithm as a fixed point ILS mapping.
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Figure 3.13 IEGD Algorithm Convergence: J(a) calculated as function of LP co-
efficients at fixed SNR and block length M = 32. Ten iterations allowed for
convergence. Filter Parameters: Center Frequency: f, = .21; Bandwidth: lB = .2;
Length: N = 32. SNR calculated as SNR = -10log 10(2a 2).
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3.7.3 Iterative Quadratic Maximum Likelihood (IQML). An alternative method

of performing the approximate minimization of J(a), with C(a) = ATKwA held constant,

is to constrain a to be of unit length, cTa = 1, and iteratively minimize J(a) via an

eigenvalue analysis. That is, rewriting J(ca) as

J(ax) = CTyTa[c(')]'Ya = aTyg(C )YC(ai)a (3.135)

Again, C(a') represents a constant matrix obtained from the previous estimate of a1 .

Using the method of Lagrange Multipliers yields the objective function (49:897-923)

J1 (C) = aYT(a')Yc(a')a - ActT ot (3.136)

Taking the gradient with respect to az and equating to zero produces

2YJ(a')Yc(a')a - 2Aa = 0 (3.137)

Under this unit length constraint, a is an eigenvector of the matrix product {Yc(a i) Yc(a) }.

Substituting into J(a) gives

J(a) = AaTa = A (3.138)

The optimal estimate of a is the eigenvector associated with the smallest eigenvalue of the

matrix product {YT(a')Yc(ai)}. Thus, for the IQML algorithm, each time an estimate of

a is obtained, it is reinserted into J(a) to produce a new estimate. This process continues

until convergence of the algorithm. An alternative explanation of this algorithm can be

obtained by considering the SVD of Yc(a') directly. That is, let

Yc(a) = U(Ca)E(a)V T (C') (3.139)

Here, U(ct) and V(a) are unitary matrices. Writing in terms of column vectors yields

U(C) = [ul(a) ... UM-2p(a)] with ui E RM2P (3.140)

V(a) = [v 1(a)... vp+1(ct)] with vi E R v +1  (3.141)
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In addition, IE(a) is an M - 2P by P + 1 diagonal matrix of the singular values of Yc(a),

denoted ai for i = 1 ... P+ 1, and arranged so that a, > 02 ... _ oP+1 > 0. Thus, in terms

of the unitary matrix V(ci)

y(a')Yc(ct') = V(ai)E2T(ao)E(at)vr(c i) = V(a&)A(ac)v T (ai) (3.142)

Here, A(a') is the diagonal matrix of the eigenvalues associated with YCT(a)Yc(ai). Since

Ai = Oa, the eigenvector associated with the smallest eigenvalue is vp+i (a'), the right-most

singular vector obtained directly from the SVD of Yc(a'). That is

Qj+l = Vp+l(Q') (3.143)

This solution is exactly the same as the unnormalized fixed point solution defined by the

ITLS fixed point mapping, £ITLS(ai), from Equation 3.100. This derivation is an original

contribution of this dissertation for it equates the IQML algorithm, previously developed as

a minimization algorithm, to an ITLS fixed point solution for a. What has been interpreted

in the past as an approximate minimization is actually a fixed point determination for the

LP coefficients.

3.7.4 Algorithm Comparison. Figure 3.14 shows the average difference in the

squared error, at convergence, between the IEGD and ILS algorithms, and the IEGD and

ITLS algorithms, for the sinusoids tested. This figure shows the ILS estimator produces,

on average, a smaller squared error of the LP objective function then that produced by

the ITLS algorithm. Hence, the ILS estimator will provide LP estimates closer to the ML

estimates then those produced by the ITLS estimator. Figure 3.15 shows the frequency

estimation accuracy of each of these algorithms for both one and two filtered sinusoids.

As expected, for this data, the IEGD algorithm provides the most accurate frequency

estimates. However, these estimates are only slightly better than those provided by the

ILS and ITLS fixed point estimates, especially at large SNRs. This slight improvement

must be weighed against the additional complexity of calculating the Hessian matrix for

the IEGD algorithm at each iteration.
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Figure 3.14 LP Estimator Minimum Error Comparison: J(a) evaluated at con-
vergence for each algorithm. MSE calculated at SNR intervals of .5dB from 500
independent realizations of M = 32 samples of sinusoids in noise. Ten iterations
allowed for convergence of IEGD, ILS and ITLS algorithms. Minimum error found
from IEGD algorithm initialized via a at ILS convergence. Filter Parameters:
Center Frequency: f = .21; Bandwidth: lB = .2; Length: N = 32. SNR calculated
as SNR = -101og 10(2a-2). MSE = -L E5'o [J(aIEDG) - J(61 )]2 .
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Figure 3.15 LP Estimator Frequency Estimation Comparison: MSE calculated
at SNR intervals of .5dB from 500 independent realizations of M = 32 sam-
ples of sinusoids in noise. Ten iterations allowed for convergence of each algo-
rithm. IIEGD algorithm initialized via ct at ILS convergence. Filter Parameters:
Center Frequency: f, = .21; Bandwidth: lB = .2 Length: N = 32. SNR calculated
as SNR = 10 log10(2a 2) an E2= i= 1 [jhi -f]
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3.7.5 Section Summary. This section developed an exact ML estimator, termed

the IEGD algorithm, for the LP coefficients based on the LP general linear model and is

an original contribution of this research. The estimator derived provides ML estimates of

the LP coefficients and, consequently, the frequencies of filtered sinusoids, by employing

an iterative gradient descent algorithm to minimize the squared error dictated by the LP

general linear model. In addition, this section derived the equivalence between the IGLS

and IQML algorithms and the ILS and ITLS fixed point estimators respectively. These

derivations show the IGLS and IQML algorithms are fixed point estimators and do not

minimize the LP objective function in general. Simulations show the IEGD algorithm

can provide ML frequency estimates by minimizing the LP objective function, though the

performance increase over the less complicated ILS/IGLS and ITLS/IQML algorithms is

negligible at high signal to noise ratios. In addition, for the simulations completed the

ILS/IGLS algorithm actually produced, on average, more accurate frequency estimates

than the more complicated ITLS/IQML algorithm. The IQML algorithm requires an

eigenvalue decomposition of a P + 1 by P + 1 square matrix at each iteration whereas

the ILS algorithm only requires the inversion of a P by P square matrix. This result is

surprising since the IQML algorithm has been widely accepted as the premier method of

estimating the frequencies of complex sinusoids in noise. Thus, if the small degradation in

performance over the IEGD can be tolerated, the ILS/IGLS estimator should be preferred

over the TLS/IQML estimator for providing minimum variance unbiased point estimates of

the LP coefficients and, consequently, the sinusoidal frequencies. The next section develops

a new method for determining the estimation accuracy for each point estimate of the LP

coefficients and frequencies based solely on a single realization of the measurements, y.

3.8 Bounding the Estimation Error

Previous portions of this dissertation have developed methods of obtaining unbiased

point estimates of the LP coefficients and, consequently, the sinusoidal frequencies present

in a set of M observations. However, knowledge that an estimate is unbiased is not ade-

quate to fully characterize the estimates; the estimation error must also be quantified. For

sinusoids in noise, the accuracy of each estimate is a function of several parameters includ-
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ing the SNR, the number of measurements and the relative amplitudes, frequencies and

phases of the sinusoids (39:414,415). This section introduces a new method for bounding

the estimation error of the LP coefficient estimates and consequently, the frequency esti-

mates, based strictly on one realization of the measurement vector. Hence, the accuracy

estimate is data driven. This derivation is an original contribution of this research and

can be used to establish confidence intervals for both the LP coefficients and the frequency

estimates. In addition, knowledge of the accuracy of the estimate is critical for data fusion

algorithms and pattern classification systems.

3.8.1 Theory. Let 0 represent the true values of a set of P parameters and let

be an associated estimate. The estimation error of any one of the parameters, denoted EP

will be defined as Op (61:345).

e = P - OP (3.144)

As a function of a random variable, this error is also a random variable and can best be

analyzed in probabilistic terms. That is, if t is an arbitrary constant, the probability the

absolute error is less then t is found as

P(JE[j < t) = P(-t < e, !_ t) (3.145)

Calculation of this probability depends on the PDF of EP which is usually unknown. Pro-

vided the estimate is unbiased, however, a loose bound on this probability of error can

be found using only the variance of the estimate by employing Chebyshev's Inequality

(27:58-59)
POP 5V{OP} (3.146)

Letting t be an integer multiple of the standard deviation, t = kap, yields

1
P(Icl >- ka 1 (3.147)
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Thus, if the variance of an estimate for OP can be calculated, a loose bound on the estimation

error can be achieved. Alternatively, confidence intervals can be formed as

P(OP - kaj,, < Op < 6P + kaj,) = 1 - 0 (3.148)

Here the quantity (1 - fi) is called the confidence coefficient and indicates the relative

frequency the interval defined by the estimate and the variance of the estimate will include

the true value of Op (28:151-158). Again, this calculation depends on the exact form of the

PDF of the error, although a bound can be obtained from Equation 3.147.

Thus, if the variance of an unbiased estimate is known or can be calculated from

a single measurement vector, the accuracy of the estimate can be gauged by employing

Equation 3.147 or a confidence interval can be established via Equation 3.148. A method

to estimate the variance of a point estimate of the LP coefficients, using only the measure-

ments and a knowledge of the variance of the noise, is derived in the next section.

3.8.2 LP Coefficients. To estimate the variance of an estimate of the LP coeffi-

cients, consider the effect of the system model on the measurements. From the LP general

linear model of Equation 3.49, since y[m] = s[m] + w[m] then

G(a)Ya = e(a) = a(a)Sa + G(a)ATw (3.149)

With a[O] = 1, this form of the LP general linear model can be written as

[e(a) - G(a)s] = G(a)Soa + G(a)Aw (3.150)

where s, is the first column of S and S, is an M - 2P by P matrix of the remaining

columns. The ML estimate for a, is unique and found as (40:186),(60)

ao(ML) = [S~oGT(a)G(a)So]- ' {sG T (a)[e(a) - G(a)so]} (3.151)
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In addition, the statistical properties of this estimate are found as (40:186)

E{ao(ML)} = a, (3.152)

Ka. = [ST GT(a)G(a)So]1 (3.153)

This gives the covariance matrix for the ML estimate of the LP coefficients in terms of

the deterministic model matrix S,. Unfortunately, the elements of this matrix are derived

from the deterministic signal, s[m], which is unavailable. To estimate the covariance matrix

from the observations, consider the expansion of the observation matrix defined by G(a)Y.

Letting L = M - 2P, then

g1 ,1  91,2 ... gl,L y[M- 2] y[M- 3] ... y[L- 1]

G(a)Y0 - 92,1 92,2 ... g2,L y[M - 3] y[M - 4] ... y[L - 2] (3.154)

9L,1 9L,2 ... gL,n y[2P - 1] y[2P - 2] ... y[0]

Thus, each element of this matrix product can be viewed as the output of a finite impulse

response filter of length L. That is, for i = 1 ... L and j = 1 ... 2P,

L-1

[G(a)Y],j = E giM+iy[M - m - 1 - j] (3.155)
m=0

Now define the vector yl = [y[M - 2],..., y[0]] and the matrix G, as the M - 1 by 2P

filter matrix

9i, ... gi,L 0 0 ... 0

GT 0 9i, ... gi,L 0 ... 0 (3.156)

0 0 ... 0 9i, ... gi,L

Then, the ih row of G(a)Y can be written as y'Gi. Thus

yTGT(a) = [GTyl ... GTy1 ] (3.157)
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As a result, the matrix product [yTGT(a)G(a)Y,] can be written as

L
yTGT(a)G(a)y° = E (3.158)

M=1

Taking the expected value of this matrix yields

L

E{Y T (a)G(a)Yo} = GT E{ylyT}Gm (3.159)
m=1

Now, with 81 and w, defined in a manner similar to y,, then y, = s8 + w1 , so that

Ely, yT} = 818T + Ejwi WTI (3.160)

Substitution into Equation 3.159 produces

L L

E{YoTGT(a)G(a)Y} - - GrT lGm + E GT E{wWT}Gm, (3.161)
m=1 m=1

Since w, is a zero-mean, normally distributed random vector with covariance matrix

Kw = o 2HTH, then

L

E{YIGT (a)G(a)Yo} = ST GT (a)G(a)So + o-2 E GT HT HGm (3.162)
m=1

For any ML estimate of a, an estimate of the covariance matrix can be obtained as

M-2P ] -I

K&= [Y:TG(a)G(a)Y-a - GTHT HGm (3.163)

Finally, employing the symmetry constraints, a = Ba with a[0] = 1, the final form of the

estimate for the covariance matrix of the constrained coefficients in a, becomes

FI M-2P -1
[YT= GT(ao)G(ao)Y - a 2 BT 1 GTHTHGB (3.164)

m=1m
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where Y = YoB. For large signal to noise ratios, assuming &o is relatively close to the

true value of a,,, an estimate of the LP coefficient covariance matrix, K&o, becomes

ka = yT GT(&)G(&)y] -  (3.165)

Thus, using only the measurements and exploiting a knowledge of the noise variance, the

variance, V{,}, of each LP coefficient can be estimated as

= [A~1.] (3.166)

Substitution of this estimate into Equation 3.147 yields a bound on the estimation er-

ror. Alternatively, substitution of this estimate into Equation 3.148 provides a confidence

interval.

Figure 3.16 shows the accuracy of the variance estimates of the LP coefficients ob-

tained from the ILS estimator for one and two filtered sinusoids. For both cases, the average

value of the variance estimates coincides with the true variance of the LP estimates as given

by the CRLB. In addition, the variance of these variance estimates is extremely small. This

indicates each estimate of the variance will be relatively close to the true value of the vari-

ance so that Equation 3.147 and Equation 3.148 can be used to accurately characterize

the accuracy of a point estimate of the LP coefficients. This information can also be used

to determine the accuracy of the associated frequency estimates.

3.8.3 Sinusoidal Frequencies. Previously, a method was derived to estimate the

variance of the LP coefficients from a single measurement vector and knowledge of the

noise variance. To map this estimate to the frequency space, a transformation must be

employed. In general, let & be an unbiased estimate of a and let K& be the covariance

matrix of the estimate. In addition, let fp = gp(a) be a scalar function of a. The variance

of fp can be estimated as (19:183),(20).

V{f} [Z9g(k) ]TK [agp( ] = (3.167)
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Thus, for a scalar function, gp(a), an estimate of the variance can be obtained provided

the first derivatives exist and & is not too far from a.

In general, there is no closed form function which relates the coefficients {a[p]} di-

rectly to the frequencies {fp}. However, for P = 1 and P = 2, and to a certain extent for

P = 3 and P = 4, closed form functions relating the frequencies to the coefficients can be

derived which allow Equation 3.167 to be employed to bound the estimation error for the

frequencies.

For one sinusoid, from Equation 3.57, From Equations the function relating fi to the

coefficient a[1] is given as

fi = I-cos-' [ a[1] = (a[1]) (3.168)

On the interval 0 < fi < .5, then -2 < a[l] < 2 and the variance of the frequency estimate

becomes (48:462)

VIM V{a[1j} (3.169)
47r2(4 - a[112 ) I a]=a[1]

For two sinusoids, employing Equation 3.58 yields the relationships (53)

f, =g,(a0 ) 1 cos1 (uP) (3.170)
27r

where the quantity up is defined as

up = [-a[lJ + (-1)P+1 a[1]2 - 4a[21 + 8] (3.171)

for p = 1, 2, provided a[1] 2 - 4a[2] + 8 >= 0. Substitution for a[p] yields

[cos(27rfl) - cos(27rf 2 )]
2 >= 0 (3.172)
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Since this inequality holds for all f, the mapping between f and a, exists. Taking the

derivative with respect to each parameter yields

Og"(no) 1 1 (-1)Pa[l] 1 (3.173)
0[11 = 87r 1- U Va[l]2 - 4a[21 + 8]

.g(o) _ 1 [ 2 (-1)P (3.174)
Oa[2 8r 1 a[1] 2 -4a[2] +8

Thus, the variance of the frequency estimates becomes

V{ } = [gE(&o)] k. [ gP(&o)] (3.175)

These variance estimates can now be used to bound the estimation error or develop confi-

dence intervals for each point estimate of the frequencies.

Figure 3.17 shows the accuracy of the frequency confidence intervals, obtained from

Equation 3.148, for both one and two filtered sinusoids. Here, the ILS algorithm was used

to determine the LP coefficients while the variance estimates for the LP coefficients were

obtained from Equation 3.165. The variance estimates for the frequencies were calculated

from Equation 3.175. For this data, Figure 3.17 shows the percentage of time the confidence

intervals, developed from the point estimates, enclosed the true value of the frequency for

one, two and three standard deviations of the variance estimates. In each case, above the

SNR threshold, the confidence intervals established provide an accurate method of gauging

the accuracy of the point estimate of the frequency.

3.8.j Section Summary. This section derived a method for bounding the esti-

mation error of the LP coefficient estimates and consequently, the frequency estimates,

based strictly on one realization of the measurement vector, and is an original contribution

of this dissertation. Specifically, from the LP general linear model, this section derived a

method for estimating the variance of the LP coefficients based solely upon knowledge of

the noise variance and the set of measurements. This unbiased estimate of the LP variance

was then transformed into an estimate of the frequency variance for one and two sinusoids.

Simulations indicate these estimates of the measurement variance can be used to gauge
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Figure 3.17 Frequency Confidence Intervals: Confidence intervals established at SNR
intervals of .5dB from 500 independent realizations of M = 32 samples of sinu-
soids in noise. LP coefficients estimated by ILS algorithm. Ten iterations allowed
convergence. Filter Parameters: Center Frequency: f, = .21; Bandwidth: fB = .2;
Length: N = 32. Confidence interval: Ifp(i) - fp I < k&f for k = 1,2,3. SNIR calcu-
lated as SNR = -10 logl0 (2a 2 ).
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the accuracy of the point estimates of both the LP coefficients and the frequencies. This

gauge can then be employed to develop confidence intervals to aid any decision making

process based on a single set of measurements.

3.9 Summary

This chapter derived estimators for the amplitude, phase and frequency parameters

of filtered sinusoids in noise. After deriving a mathematical model describing the effects of

a filter on sinusoids and noise, ML estimators for the sinusoidal parameters were developed

based on this model. During this development, it was shown that ML estimates of the

amplitude and phase parameters require ML estimates of the frequencies in addition to the

use of the correct system model. An ML estimator for the frequencies was then derived

based on an iterative gradient search employing the ML frequency objective function.

Simulations indicate this technique can produce minimum variance unbiased frequency

estimates provided the effects of the filter are correctly incorporated into the system model.

Since this ML frequency estimator can require many iterations to achieve conver-

gence, an alternative method for estimating the frequencies was developed based on linear

predictive modeling. Specifically, an equivalent general linear model, parameterized by a

set of LP coefficients was derived for estimating the frequencies of the sinusoids in noise.

The LP general linear model, derived in this chapter, properly accounts for the effects of

the LP coefficients and system filter on the noise and is an original contribution of this

research. Estimation of the sinusoidal frequencies was recast as the estimation of the LP

coefficients using the general linear model.

The ILS and ITLS estimators were then derived, based on fixed-point theory, to

estimate the LP coefficients of the general linear model from the measurements. The

development of these estimators represents an original contribution of this research. Simu-

lations indicate each of these estimators produce accurate estimates of the LP coefficients

and, consequently the frequencies, above a certain SNR threshold; convergence is attained

in a few iterations.
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This chapter then related the ML frequency objective function for filtered sinusoids to

the LP general linear model. The analysis showed that the LP coefficients which minimize

the sum of the squared errors as defined by the LP general linear model also provide ML

frequency estimates and is an original contribution of this research. An ML estimator for

the LP coefficients, termed the IEGD algorithm, was then derived based on an iterative

minimization of the LP general linear model squared error and is an original contribution of

this research. Simulations indicate this algorithm will provide the LP coefficients producing

the minimum squared error and consequently, ML estimates of the LP coefficients and

frequencies.

Since the IEGD algorithm can be computationally difficult to implement, the IGLS

and IQML approximate minimization algorithms were examined. Analysis revealed that

the IGLS algorithm is equivalent to the ILS fixed point estimator of the LP coefficients

while the IQML algorithm is equivalent to the ITLS fixed point estimator. This recasting

of the IGLS and IQML algorithms as fixed point estimators is an original contribution of

this research. Simulations comparing the performance of the ILS and TLS algorithms with

the IEGD algorithm indicate the IEGD algorithm produces frequency estimates which are

only slightly better than those obtained via ILS and ITLS. In addition, the simulations

indicated the ILS algorithm produces frequency estimates at least as accurate as those

produced by the ITLS algorithm. All other factors being equal, the ILS algorithm is thus

preferred over the ITLS algorithm since the ITLS algorithm requires an iterative SVD of

the observation matrix.

Finally, this chapter derived a method of bounding the estimation error of the point

estimates of the LP coefficients and the frequencies based only on the measurements and a

knowledge of the noise variance. This derivation employed the LP general linear model to

obtain unbiased estimates of the covariance matrix of the LP coefficients and is an original

contribution of the research. Simulations indicate the estimates of the variance are good

enough to allow confidence intervals to be established for the frequencies.
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IV. Application: Digital Electronic Warfare Receiver

4.1 Introduction

This chapter applies the ILS fixed point estimation technique to the digital EW re-

ceiver being built by the Air Force Research Laboratory/Wright Laboratory (AFRL/WL).

After discussing the general receiver architecture, models of the real and complex data out-

put from the receiver will be constructed. A method to efficiently implement the receiver

as a nonmaximally decimated, Uniform Discrete Fourier Transform (UDFT) polyphase

filter bank is then derived. After showing there is no loss in frequency estimation accuracy

attributable to the use of the complex data model as opposed to the real data model, a

new form of the LP general linear model is derived for complex sinusoids. Identification

of the LP coefficients for this model is then shown to be related to ML frequency estima-

tion and an ILS fixed point estimator is derived for estimating the LP coefficients. After

applying the ILS estimator to the receiver output for both one and two sinusoids, the

chapter concludes by showing the PDF of the complex filtered data can be approximated

as a complex multivariate Gaussian PDF. This approximation, in turn, allows a simplified

frequency estimator to be derived for a single complex sinusoid.

4.2 Digital Receiver Architecture

As shown in Figure 4.1, the basic structure of a digital channelized receiver can

be divided into the antialiasing filter, Analog-to-Digital Converter (ADC), filter bank,

demodulators, decimators and parameter encoders.

In general, the input signal can be modeled as the sum of P analog pulsed sinusoids

in zero-mean, normally distributed, independent noise, 77(t)

P.
x(t) = v(t) + i(t) = bp cos(27rFpt + + 7(t) (4.1)

P= 1

Here, Fp is the analog frequency, 0' is the phase, and b is the amplitude of the p4 sinu-

soid. This analog signal is passed through a 34" order Chebyshev bandpass antialiasing

filter with critical frequencies as shown in Table 4.1 (16). This filter reduces the effects of
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Figure 4.1 EW Digital Receiver Architecture: K = 32 Bandpass Filters; R = 16 Deci-
mation Rate; 8-bit ADC with sample rate f, = 3GHz; Chebyshev Antialiasing Filter
with 1.5 GHz Bandwidth.

out-of-band interfering signals and noise while passing signals within a specific frequency

range for digitization (56:2). For bandpass sampling of real signals, the 1.5 GHz oper-

ational bandwidth, (BW), of this filter is related to the sample rate, f,, of the ADC as

2BW < f, < 4BW (84:125).

An analog signal passing through this filter is sampled by the eight bit ADC at a

sample rate of f, = 3 x 10' samples per second. The resulting digital signal, x[m], becomes

(64:10)
P.

x[m] = E bp cos(27rfpm + 0) + 77[m] (4.2)
p=1

where the digital frequency, fp, is related to the analog frequency, Fp, via the transforma-

tion fp = Fpl/f,. Thus, the analog frequency range 1.5GHz < Fp : 3GHz is inversely

mapped to the digital range 0 < fp < .5. Finally, the noise, i7[m], is zero mean and

normally distributed with a covariance matrix determined by the characteristics of the

antialiasing filter.

In order to provide for broadband instantaneous frequency coverage and allow for

simultaneous signal detection and estimation, the operational bandwidth is divided into

K = 32 specific frequency bands by employing a set of bandpass filters. The coefficients
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Table 4.1 Filter Critical Frequencies
Filter Type Order Freq Gain
Anti-aliasing 34 1.4953(GHz) and 3.047(GHz) -60dB

1.5047(GHz) and 2.953(GHz) -3dB
Prototype 192 1/32 rads/sec -60dB

1/64 rads/sec -3dB
kth Bandpass 192 k/32+1/32 -60dB

k/32±1/64 -3dB

for the kth bandpass filter, hk[n], are complex and derived from a real, symmetric, lowpass

filter, ho[n], by

hk[n] = ho0n]e 2 #knIK (4.3)

This prototype filter, ho[n], is an N = 192 tap, real, symmetric filter designed using the

McClellan-Parks algorithm to meet the frequency characteristics given in Table 4.1. Since

Hk(e22x1) = H_(ei[2w-21!iI.), each channel of the filter bank will be a bandpass filter with

IHk(ej2' ')l 0 for If - AI > 1/32. For a real signal, x[m], the output of the kth filter,

Yk [in], will be complex and given as the convolution sum

N-1 K-1 No-1

yk[m] = E ho[n]x[m - n]le-2rk'/K  E E ho[i + nK]x[m - I - nKlej2 r 1k / K (4.4)
n=O L=0 n=O

where N = KN, for integer N,. As shown in Appendix F, m] can be interpreted

as the Short Time Fourier Transform (STFT) of x[m] as seen by a causal finite window

q[n] = h0 [N - 1 - n] and evaluated at w = 27rk/K. Conversely, a real output, yk[m], can

be obtained by adding the outputs from channels k and K - 1 - k. In either case, since

the spectrum will be band-limited, the output of each filter can be translated to standard

frequency range via a set of modulators so that

k[ma] = [m]e - j jm (4.5)

This demodulation allows for a standard set of signal detection and parameter extraction

techniques to be developed for each channel.
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For EW applications, the speed at which the sampled data can be processed is much

slower than the data rate of the signals. In order to compensate, after demodulation, the

outputs of each channel can be decimated by an integer factor, R, so that 'k[mJ = ftk[Rm].

Consequently, the spectrum of zk[m] can be written as(64:102-102)

Vd - ~R-1 w-27r

(eiw) = Uk exp R (4.6)
R =0

This decimation process serves to scale the frequency spectrum of vk [irn].

After decimation, the output of each channel is passed to a parameter encoder which

estimates the parameters, such as amplitude, frequency and phase, of a pulsed sinusoid

within the channel and outputs a Pulse Discripter Word (PDW) containing these estimates.

These estimates, in turn, provide the data needed for a classification system to determine

the type of radar emitting the pulse. Before constructing the parameter encoder, the

output data must first be accurately modeled.

4.2.1 Real Data Model. Since all K = 32 filters are derived from a single

prototype and the output of each channel is modulated to a standard frequency band prior

to decimation, the output of each channel will be the same as the output, y[m], of a real

filter, h[n] with a bandwidth of 1/16, followed by an R-fold decimator. For the sampled

signal, x[m], using the results from Chapter III, an expression for the decimated output

can be written in the form

P

y[m] = s[Rm] + w[Rm] = E bp cos(21rRfpm + Op) + w[Rm] (4.7)
P=l

The decimator has effectively decorrelated the output noise by the decimation factor R

and scaled each sinusoidal frequency to Rfp. To prevent aliasing and allow for accurate

frequency estimation, R < .5K = 16. In addition, since several of the sinusoids will have

been greatly attenuated by the filter, the summation is now only over P where P < Po.

The problem now is to estimate the amplitudes, {bp}, phases, {p}, and frequencies, {fp},

of the sinusoids given the decimated measurements.
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Now assume there are M samples of the decimated steady state output and define

h as a vector of filter coefficients by h = [h[0],..., h[N - 1]]T and the vector of R zeros as

OR = [0... 0 ]
T . Using these definitions, the R(M - 1) + N by M filter matrix, H, can be

written as
h 0 R ... 

0 R

O h ... O(4.8)

0 R OR ... h

For m = 0... M - 1, a vector form of the decimated output can be written as

y = HTx = HTV + HT17 = S + w (4.9)

The decimated noise vector, w, is a zero-mean, normally distributed, correlated noise

sequence with covariance Kw = a2HTH. Again, using the results of Chapter III, define

the deterministic signal matrix, AR, as AR = [A, A2] where the M by P matrices, A1 and

A2, are defined by

[Aj,, = cos(27rfpR[M - I + N - 1])

[A2],,p = - sin(27rfpR[M - I + N - 1]) (4.10)

for I = 1... M and p = 1 ... P. With scaling vectors b, = [b, sin(€x) ... bp sin(€p)]T and

b, = [b, cos(C1) ... bp cos(€p)]T, a vector form of the decimated output becomes

y = Alb, + A2b, + w = ARb + w (4.11)

where RZ denotes the real data model. Here bT = [b T; bT a are
= I I bT and the 2P columns of Ap r

linearly independent. This is equivalent to viewing y as a set of observations generated

from the deterministic system, Apb, and corrupted by w. As such, the PDF for this model

becomes

p(y;0) = [27r]--MIKWI-' exp[--(y - Apb)Tgw(y - Ab)I (4.12)
2
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where 0T = [bT, fT. As in Chapter III, the problem of estimating the frequencies, phases,

and amplitudes has been changed to the problem of estimating the deterministic signal

matrix AR and the scaling coefficients b, and b,. The development of this model for real

filtered and decimated data is an original contribution of this research.

4.2.2 Complex Data Model. Since the input signal is real, the outputs from chan-

nels 0,...,;L - 1 contain the same information as the outputs from channels , , K - 1."' '2 
2 ''

Thus, an alternative model for the data can be constructed by forming a complex model

for the data from channels 0,..., K/2 - 1. In addition, since each bandpass filter is formed

by modulating the prototype filter with a complex exponential and each filter output is

demodulated to a specific frequency band prior to decimation, it is possible to build a sin-

gle complex model for each channel based on a standard model. That is, with x[m] being

the sum of P, real sinusoids in noise and h[n] representing a complex filter band-limited

to 1/16, the decimated output, [m], of any given channel can be written as

[m] = i[Rm] + v[Rm] (4.13)

Here 9[m] and r[m] represent the convolution of the real sinusoids, v[m], and noise, 77[m],

with the complex filter. For steady state conditions,

1P*
[mn] = E bjpe' e" + b2pe-wPme P (4.14)

where bip = b;IH(ejwP)j; Op = 4(wp)+Op; and b2p = b~jH(e-jwP) while 02p = i(-Wp)-Op.

Since the filter is band-limited, assuming only P complex sinusoids are within the filter

passband, the complex form of the output signal, [m], becomes

P

1[m] = ej b2a ' s e + tD[Rm] (4.15)
p=1

The decimator has effectively decorrelated the output noise by the decimation factor R

and scaled each sinusoidal frequency to Rfp. To prevent aliasing and allow for accurate

frequency estimation, R < K = 32. Employing the complex data model for the output of
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each channel yields a method to increase the decimation rate, R, by a factor of 2 over the

real data model without losing information and is an original contribution of this research.

For this model, the complex noise output, zfn[m], is a random variable which must

be described statistically. That is, iiv[Rm] = w,[Rm] + jw,[Rm] where w,[m] and wi m]

represent the convolution of the real noise with the real and imaginary components of the

filter. Assuming there are M samples of the decimated steady state output, with the vectors

of filter coefficients defined as h, = [h,[0],... , h,.[N - 1]]T, and hi = [h1[0],... , hi[N- 1]] T ,

the R(M - 1) + N by M filter matrices, H, and Hi can be written as

h, OR ... O hi OR ... OR

0 R h,. O 0 R hi ... (4.16)

0 R OR ... h, OR 0 R ... hi

Then, in vector form w, = HTi1 where w, = [w,.[M - 1] ... W,[O]]T and wi = Hfir where

w, = [w[M - 11 ... w,[]]T. The real, augmented noise vector WT = [WT, WT] is a normally

distributed, zero mean random vector with covariance matrix

Kw= HTH,. H1 H1 (4.17)
HT H,. HT H,

In general, HT H, # HTH,. and HTHI # -HfTH so that fo cannot be formally represented

as a complex normally distributed random variable as defined in Appendix H.

To accurately model the complex data, , rewrite the vector in terms of the con-

catenation of the real vector, Yr, and the imaginary vector, yi, as yT = [yT; yT] where

Y,= [y[M - 1] ... y[0]]T and y, = [y,[M - 1]... y4[O]]T . Expanding yields

P

y. [m] = E b cos(27rRfpm) - b" sin(27rRfpm) + w,.[Rm]
p=1

P
yi[m] = 1" bsin(2rRfpm) + b" cos(27rRfpm) + wi[Rm] (4.18)

p=1
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As with the real data model, bc = bp cos(op) and bp = bp sin(Op) are real scaling coefficients.

Finally, with A, and A2 defined be the Ml by P real signal matrices of Equation 4.10 then

y , Al A: I + [ = Acb + w (4.19)
Yi -A2 Al bs wi

where Ac is the deterministic signal matrix for the complex model. Here, y and w E R2M,

while Ac E R2Mz 2 P. The PDF of y becomes

1

p(y;O) = [27r]-MKwI 5 j-exp[- 1(y - Acb)K l(y - Acb)] (4.20)
2

This equation accurately models complex data derived from passing a real signal through a

complex filter and is an original contribution of this research. As with the real data model,

the problem of estimating the frequencies, phases, and amplitudes has been changed to

the problem of estimating the signal matrix A and the scaling coefficients b, and b5.

4.2.3 Receiver Implementation. In order to exploit the advantages of the dec-

imation process, the digital EW receiver described above is implemented as a multirate,

nonmaximally decimated, polyphase, UDFT filter bank where, in general, the number of

channels K, is an integer multiple of the decimation rate R. This unique implementation

allows every operation after the ADC to be performed at a rate of 1IR the rate suggested

by Figure 4.1.

To accomplish this data rate reduction, the prototype filter, h0 [n] must decomposed

into K polyphase components Ek(z) as (92)

K-1

Ho(z) = 1 z-'E(zK) (4.21)
1=0

Here, Ej(zK) = N'- h,[nK + l]z -
,

g and the integer N., defined by KN, = N, is the

length of the I"h polyphase filter. As shown in Figure 4.2, with the Inverse Discrete Fourier

Transform (IDFT) matrix, WtDFT, defined by [WIDFT]ki = e j 2
,klIK, the output of the kth
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Figure 4.2 UDFT Filter Bank Polyphase Implementation

channel is given as
K-1

yk[MI E tm] expjj27rlk/K} (4.22)
1=0

where t1[m] is the output of the I"h polyphase component. Thus, the z-transform of k~m]

becomes
K - 1iZ 

) X ZY = (z 1 z-expjj2rkl/K}Ej~KXz (4.23)
1=0

so that the transfer function for the kth channel can be written as

Yk Z) K-1iZK

HMk(Z) = X( = 1:(z exp-j2rk/Kj)-'Ej(K (4.24)

Since (z exp{-j27rk/K})K = zK, evaluating Equation 4.24 at z = z exp{-j2irk/K}, yields

Hk(z) = Ho(zexp{-j27rk/K}) (4.25)

This shows k[mI is the output of a bandpass filter centered at w = 2 irk/K.

In order to reduce the speed at which the filter, IDFT matrix and modulators operate,

the R-fold decimators can be translated from the output of the modulators to the input

of the polyphase filters as shown in Figure 4.3. Letting ([m] be the decimated output of
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Figure 4.3 Nonmaximally Decimated Polyphase UDFT Filter Bank

the kth channel, then

K-1

k"[m] = k[Rme -w'R ' = Z t,[Rm]e -2 'kL/Ke -iwkRM (4.26)
L=O

Since the first exponential term is independent of R, the decimators can be moved to

the inputs of the IDFT matrix to allow calculation of the IDFT and modulators at the

decimated rate. Decimating the output of the Ith polyphase filter gives the sequence

s1[m] = tI[Rm] so that the z-transform of s [m] becomes

S(z)~E 1 (zK'R exp{ -j2rKr X (z1IR exp { -j2 7rr z-I/R exp{jrrl}

(4.27)

Since the ratio KIR = F is an integer and exp{ } = 1 for all integers r then

R-1 I 
R

SI(z) = El(z) E /Re x j27rr\ (1/ RiR (4.28)

r=O V )

This is equivalent to replacing the filter E1(zK) with Ei(zF) and moving the R fold dec-

imator to the front of the filter bank as shown in Figure 4.3. All operations in the filter

bank are now accomplished at 1/Rth the rate of the input data.
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In terms of the time domain, the output of the 1th polyphase component can be

written as
el] ho,[gn/F + 1], for n = pF for integer p (4.29)

0, otherwise

Since N = KNo, the decimated output of each polyphase component becomes

No-1

td[m] = j ho[l + mK]x[Rm - I - nK] (4.30)
n=O

The IDFT output is then

K-i N.-1

k[m] = E 3 h,[l + nK]x[Rm - I - nK]e 2T" /K (4.31)
1=O n=O

This expression is equivalent to Equation 4.4 for the decimated case where m = Rm.

The unique implementation of a nonmaximally decimated polyphase filter bank for

K = FR = 32 consists of zero-padding each polyphase component filter with F - 1 zeros

and decimating by R the input across all K channels prior to taking the IDFT. For the

real data model, since R < .5K, the maximum rate of decimation is 8. Alternatively, for

the complex data model, since R < K, the maximum rate of decimation is 16. Thus, if

the accuracy of the frequency estimates obtained from the complex data model are equal

to those obtained from the real data model, the complex data model should be employed.

As shown in Appendix I, this architecture for performing channelization via a non-

maximally decimated polyphase filter bank is mathematically related to a similar method

used by Rabiner and Crochiere (55). However, the architecture derived here requires only

N unique filter coefficients to produce the equivalent STFT. Conversely, the architecture

proposed by Rabiner and Crochiere (55) requires the installation of K, F-fold expanders

following decimators and uses F subsets of R unique filters; each of length NIR, for a

total of FN filter coefficients to produce the equivalent STFT. This architectural design

is an original contribution of this research and has been accepted for publication (99). In

addition, the architecture has been assigned Serial Number 08/816,951 by the U.S. Patent

and Trademark Office and given a filing date of 21 Jan 97.
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4.3 Parameter Estimation

4.3.1 Estimation Accuracy. As described in Chapter III, a critical step in the

development and analysis of point estimators is to accurately model the PDF of the data.

For both the real and complex cases, the data model was shown to be equivalent to viewing

y as a set of observations generated from the deterministic system Ab corrupted by the

zero mean, normally distributed, correlated noise vector w.

y = Ab + w (4.32)

where i = R denotes the real data model and i = C denotes the complex data model.

The problem of estimating the frequencies, phases, and amplitudes was changed to the

problem of estimating the signal matrix, A1 , and the scaling coefficient vector, b, from the

measurements in y. In addition, for both models, the PDF of the measurement vector had

the form

p(y; 0) = [21r]-MKw - 5 exp[--(y - Aib)TKwV(y - Aib)] (4.33)

where Mi = -. 5M for the real model and Mi = M for the complex model. For both

models, as shown in Chapter III, the CRLB, which provides a limit on the accuracy of any

unbiased parameter estimator, can be calculated from

K- [8m [Kw]' [ Y ! [0] (4.34)

Figure 4.4 shows the CRLB for the frequency of a single sinusoid using both the real

and complex models for data obtained from channel six prior to decimation. As shown in

the figure, the CRLB for the frequency of a sinusoid within the filter passband is nearly

the same for either model. Thus, there should be virtually no loss in estimation accuracy

attributable to the use of the complex data model instead of the real data model. However,

since the complex data can be decimated at twice the rate of the real data without aliasing,

the complex data model of Equation 4.19 will be employed to develop point estimates of

the sinusoidal parameters.
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4.3.2 ML Estimation. As shown in Chapter III, parameter estimators, whose

estimates of the sinusoidal parameters, 0 = [br, fr]T, attain the CRLB, can be developed

by maximizing the parameter likelihood function. For the complex data model, the ML

estimate for 0 can be obtained by minimizing the following objective function, with respect

to the parameters in 0:

J(O) = [y - AcbIT gwV [y - Acb] (4.35)

For a fixed ML estimate of f, the ML estimator for b is unique and found as (22), (40)
b(ML) T -1 -y

b(ML) = [Ac  Ac] AK Y (4.36)

The ML estimate for f, on the other hand, minimizes the following objective function (40):

j(f) = yTKly _ yTgw1 c [AcTKw'Ac]-1ATK w ly  (4.37)

Again, as shown in Chapter III, this objective function, termed the ML frequency objective

function, is a highly nonlinear function with respect to f. Direct minimization involved a

computationally intensive search in the P dimensional frequency domain based on gradient

search algorithms. In general, though the method of gradient search can provide accurate

frequency estimates, this technique usually requires too many iterations to converge, and

is too sensitive to the initial estimates for this EW application. Alternatively, a simpler

estimator for the frequencies can be developed by employing LP modeling techniques for

the complex data model.

4.3.3 LP Modeling. In general, a complex signal, i[m], consisting of the sum of

P complex sinusoids can be represented as the sum of P complex modes (73:484-485)

P P
9[m] = >: [bbke " '] ejw' "- = E [bke j'] zkj = s,[m] +js,[m] (4.38)

A---1 k=1

Here, Zk = ei2wfl while s,[m] and si[m] are the real and imaginary components of 9[m]. A

P"h order complex polynomial, Ao(z), which incorporates these modes can be constructed
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as P. P.

A,(z) = a[0] f1(1 - ZkZ - 1 ) = Zadp]z-' (4.39)
k=1 p=O

where the LP coefficients, hip], are complex quantities given by ap] = aj[p] +jai[p]. Thus,

A(el"-m) = 0 for each of the P frequencies present in 9[m]. Since each mode is a zero of

A(z), the P frequencies present in g[m] can be found as roots to A(z) and the corresponding

time domain expression becomes the complex LP equation.

P

Z i[p[m-p] -- = 0 (4.40)
P=O

For this equation to be true for M data samples, 0 < m < M - 1, both the real and

imaginary components must be zero. That is

P

E a[pJsl,[m - p] - a,[p]s,[m - p] = 0
P=o

P

Ea,[p],i[m - p] + aip]s[m - p] = 0 (4.41)
p=o

To construct a matrix form of this equation for m = P... M - 1, define the LP coefficient

vectors, a, and ai, as a, = [a,[0]... a,[P]]T and a, = [a,[0] ... ai[P]]T and the component

signal matrices, S, and Si, as

[Sr].,I = s,[M + 1 - k - 1] (4.42)

[Silk,, = s,[M + 1 - k - 1] (4.43)

for k = 1... M - P and I = 1 ... P. Using these definitions, the complex LP general linear

model becomes

S =[ - j[:J = Sac = 0 (4.44)
Si S 4 a1
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From the complex data model, since f[rnI = g[m] + zi[m], in terms of the measurements,

the complex LP general linear model can be written as

Yaca Y, - [ W j zar zJZ (4.45)
Y Y a, Wi W, ai z,

Here, the matrices, Y, Y1, Wi and W, are defined in a manner similar to S, and Si while

z, and zi can be considered as the real and imaginary error vectors. Finally, define Ar as

the M - P by M matrix of real coefficients

[A 1  j a,[k -l] for l < k < + P4.46)

0 otherwise

and A, as the associated matrix of imaginary coefficients

a,[k - l] for I < k < l + P (4.47)
[AIkL=(.7S0 otherwise

for I = 1 ... M - P. The vector of errors, z, can be written as

zr A[ AI
Z = -Al'= ATw (4.48)zi [ A T  A T  wi

Here, Ac is the matrix of coefficients for the complex LP model. As a linear transformation

of w, a zero mean, normally distributed random vector, z becomes a zero mean, normally

distributed random vector with covariance matrix

Kz = ATKc (4.49)

Premutiplying Equation 4.45 by G(ac), the Cholesky decomposition of Kj', yields a new

form of the complex LP general linear model

G(ac)Yac = Y(ac)ac = e(ac) (4.50)
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Here, e(ac) is a zero mean, normally distributed random vector with covariance matrix

Ke(ac) = I. The estimation of the P frequencies in .[m] has been recast as the estimation

of the 2P + 2 LP coefficients using the LP general linear model derived in Equation 4.50.

The number of LP coefficients to be estimated can be reduced further by imposing sinu-

soidal constraints on the coefficients.

As shown in Appendix C, for P complex sinusoids, the LP coefficients are complex

symmetric with a[p] = a P-p]*. Thus only P+1 coefficients are necessary to determine ac

completely. As in Chapter III, let a be the set of P+1 real coefficients, a = [a[0]... aip]]T,

With P being an even number, the symmetry constraints can be imposed by defining the

vector a as

a[01 = aR[L]

a[k + 1] = aR[k] for k =0...L- 1 (4.51)

a[L+I+1] =a,[l] forl=0...L-1

where L = P/2. Alternatively, if P is an odd number, let L = (P - 1)/2. The symmetry

constraints can be imposed by defining the vector at as

a[01 = aR[L]

a([k + 1] =aR[k] for k =0...L- 1 (4.52)

aL+ + 1] = aj[l] for = 0... L

In either case, the LP coefficient vector aT = T c

where B is the matrix relating the P + 1 unique coefficients in a to ac.

Imposing these constraints on the complex LP general linear model yields

G(ac)YBa = G(at)Yca = e(a) (4.53)

The search for the LP coefficients, contained in ac, has been reduced to the identification

of the P + 1 constrained coefficients contained in a. Here, Yc is an M- 2P by P + 1 matrix

of rank P + 1. Now let y, be the first column of Yc and let Y be an M - 2P by P matrix

of the remaining columns of Yc. By constraining a[O] = 1 and defining y(a) = G(a)y,
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and Y(ck) = G(a)Y, a final form of the complex LP general linear model becomes

y(jc) = -Y (a)cta + e(ct) (4.54)

Equation 4.54 represents the true general linear model relating the LP coefficients to the

frequencies present in P complex sinusoids in noise and is an original contribution of this

research and has been submitted for publication (97). The problem now is to estimate the

P unique LP parameters in a, given the M observations with M > P.

4.3.4 LP Model-ML Frequency Estimation Relationship. As described in Chap-

ter III, there exists a relationship between the complex LP general linear model of Equa-

tion 4.54 and the ML frequency objective function of Equation 4.37. First, assume that y

has length 2M > 2P and Ac has 2P linearly independent columns. From Equation 4.19,

since Ac is an 2M by 2P matrix with 2P linearly independent columns, the column vec-

tors of Ac, denoted Ai, for i = 1 ... 2P, span a 2M dimensional subspace, V1 , of the real

vectors, R2M. As such, there exists a 2M - 2P dimensional orthogonal subspace, denoted

V2, which is spanned by the vectors, aj for j = 1... 2M - 2P, such that if 0 E V and

-y E V2 then OTy = 0 (83:132-152). Now consider the matrix Ac given by Equation 4.48.

From Equation 4.41, for the complex sinusoids, AAc = [0]. The 2M - 2P columns of

A are orthogonal to the 2P columns of Ac. Furthermore, since the columns of Ac are

linearly independent, they form a basis for V2, the subspace orthogonal to V1. Employing

the same steps as in Chapter III, minimization of J(f) with respect to f can be written

as a minimization of J(Ac) with respect to the basis vectors in Ac where

J(Ac) = yAc(AKwAc)lA TY (4.55)

Finally, since each column of Ac is derived from the LP coefficient vector, ac, then J(Ac)

can be written as

J(ac) = aTyT(A KwAc)-lYac (4.56)
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Employing the complex sinusoidal constraints via the matrix B and taking the Cholesky

decomposition the inverse of Af'KwAc yields

J(a) = aryTG(Q)TG(a)Yca (4.57)

By defining the real and imaginary error vectors as er(a) = [e,[M - 1] ... e, [P]]T and

e,(a) = [e[M - 11 ... e[P]]T and constraining a[0] = 1 yields

e(a) = G(a)Ycct = yc(a) + Y(a)ao (4.58)

where e(a)T = [e,(a)T, ei(aX)T] represents the concatenation of the real and imaginary

error vectors. This equation is identical to the complex LP general linear model derived

in Chapter III. By properly incorporating the effects of the filter coefficients and the LP

coefficients in developing the LP general linear model, this derivation shows the exact

relationship between the LP coefficients and ML complex frequency estimates. The set of

LP coefficients which minimize the squared error defined by the LP general linear model

will provide ML estimates of the frequencies. Furthermore, via the invariance of ML

estimators, the LP coefficients which minimize the squared error are the ML estimates of

the coefficients.

4.3.5 LP Coefficient Estimation. Ideally, the optimal estimator for the LP coef-

ficients would minimize J(a) so that the resulting frequencies would be ML estimates. As

discussed in Chapter III, minimization of J(a) with respect to ce is a nonlinear optimiza-

tion problem. Direct minimization involved a computationally intensive search in the P

dimensional coefficient domain based on gradient descent algorithms. In general, though

the method of gradient descent can provide accurate LP coefficient, and consequently, fre-

quency estimates, this technique usually requires too many iterations to converge to an

answer and is too sensitive to the initial estimates for this EW application.

Alternatively, since Equation 4.54, has the same form as the LP general linear model

derived in Chapter III, a fixed point estimator can be constructed to estimate ce from the

complex data. As shown in Chapter III, the ILS and ITLS fixed point estimators were
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found to produce estimates nearly as accurate as those attained by the direct minimization

of J(ak). However, these estimators took fewer iterations to converge and were less sensitive

to initial estimates. Since the ILS estimator was found to produce estimates as least as

accurate as the ITLS estimator while being less computationally intense, this estimator

will be used to provide frequency estimates of the decimated output of the EW receiver.

From the system model, with cO = Op, let a' be the i" estimate of the LP coeffi-

cients. Employing the ILS fixed point algorithm of Chapter III yields

i~+ 1  [le(ao)Y (ao)] - 1

=- - (4.59)

When a' + 1 = a, the error vector, e(a') is orthogonal to the columns of Y(a i) and

a, = £ILS(cr). A fixed point has been reached and the estimate of the LP coefficients

becomes &o = &c,.

Figure 4.5 and Figure 4.6 show the accuracy of the true and the approximated ILS

estimator, in relation to the frequency estimation technique employed in the EW receiver,

for estimating the frequency of a single sinusoid at the filter output. As shown in these

figures, the ILS estimator attains the CRLB at an SNR approximately 5dB lower than

the current phase-based WPA estimator and maintains this accuracy across the passband

of the filter. In addition, the approximate ILS estimator, constructed with Kw = 2I,

performs almost as well as the true ILS estimator. This indicates the effect of the filter

and decimation serve to decorrelate the data enough that the approximate model should

be adequate for estimating the frequency of a single filter sinusoid.

Figure 4.7 and Figure 4.8 show the accuracy of the true and the approximated ILS

estimator for estimating the. frequency of a two sinusoids at the filter output. At the

present time, the EW receiver does not have the capability to estimate the frequencies

of two time-coincident sinusoids within the filter passband. As shown in Figure 4.7a, for

two sinusoids with frequencies near the passband frequencies, the frequency estimates do

not reach the CRLB at low SNRs. This is probably due to the severe reduction in signal

amplitude occurring at the edge of the filter. Figure 4.7b shows the estimation accuracy

for two closely spaced sinusoids. Here, the decimated frequency separation of df = .01 can
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not be resolved through the use of a Fourier Transform. The approximate ILS estimator

appears to outperform the true ILS estimator at low SNRs. Close analysis of the figure

shows the approximate ILS estimator is providing biased frequency estimates at these

low SNRs. Above the threshold of about 1dB, both estimators perform about the same.

Finally, Figure 4.8c shows the accuracy of both ILS estimators for a more typical set of

signals. Here, since the two sinusoids are within the passband and are adequately separated

in frequency, both estimators attained the CRLB at less than -5dB. As with the single

sinusoid, the approximate ILS estimator performed as well as the true ILS estimator. Thus,

the approximate estimator should be adequate for estimating the frequency of two filtered

sinusoids.

4.3.6 Complex Model Approximation. For this particular prototype filter, h0 [n],

and decimation rate, R = 16, experimental analysis shows HTHr ; [01 and HrH, -- HTH.

Using these approximations, as shown in Appendix H, the PDF of the complex data model

can be written in the form of a complex multivariate Gaussian PDF (40:505-507)

p(, 0) [ 7r M IKr j,-' exp - - (4.60)

Here, the M by P complex matrix, Ai is defined by [A] 1P = ej2,Rf,[M-I+N-11 and the

complex vector b is defined by bp = bpei ¢ . In addition, k!, = ac2/HH! " where AH is a

complex R(M - 1) + N by M filter matrix constructed using the complex filter coefficients

in Equation 4.8. This is equivalent to viewing y[m] as the output of a complex filter {h[n]}

due to a linear sum of P complex sinusoids in normally distributed, independent, complex

noise, [m]. Using this approximation, equations for the input and output data become

= 1 b e O
# 2 1

f + 7[m] and [m] = E bpe j 2
,
,!p + tTVM] (4.61)

where tb[m] is a zero-mean, complex Gaussian noise sequence with a covariance matrix

given by Kf1 = a 2 H k. This approximation allows a simpler method of characterizing

the output of the digital receiver and is an original contribution of this research.
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Figure 4.5 ILS Estimation Accuracy for Single Sinusoid: MSE calculated from
500 independent realizations and M =16,32,64 samples. Ten iterations allowed
for convergence. The incorrect model assumed Kw = a2I. Correct model used
KW. Sinusoid Parameters: [bo = 1, f, = .0235, 0 = 3 7r/8]; SNR = 10 logl1 0 (2a');
MSE =L E5 Z 00(f 1[I]f)
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Figure 4.6 ILS Frequency Estimation Accuracy Across Bandwidth: MSE cal-
culated from 500 independent realizations of block length M =32. Ten iterations
allowed for convergence. The approximate model assumed KW = 172 while the true
model used correct Kw. SNR = 10 logl10(2o,2 ); MSE = F_'Z(fj[i] - fl) Sinu-
soidal Parameters: [b' - 1, 0'= 37r/8].
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Figure 4.7 ILS Frequency Estimation Accuracy for Two Difficult Sinusoids:
MSE calculated from 500 independent realizations of block length M =32. Ten iter-
ations allowed for convergence. The approximate model assumed Kw a o21 while the
true model used Kw. SNR = -101ogl 0 (2c); MSE =00 P i=1Z~f[i
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Figure 4.8 ILS Frequency Estimation Accuracy for Two Typical Sinusoids:
MSE calculated from 500 independent realizations of block length M = 32. Ten itera-
tions allowed for convergence. The approximate model assumed Kw = u21 while the
true model used Kw. SNR= -10 1ogl 0(2a 2); MSE = -00 =1  .l°[i - ).

4.3.7 Bounding the Estimation Error. As shown in Chapter III, the error in a

point estimate of the LP coefficient and, consequently, the frequencies can be bounded if

the variance in the estimates is known or can be calculated. From Equation 3.165, since the

complex LP general linear model has the same form as the real LP general linear model, an

unbiased point estimate of the variance can be calculated directly from the measurements

as

k6. = [YT G(o)(o)Yc] -  (4.62)

Figure 4.9 shows the average accuracy of the point estimates of the LP coefficient variance

for one and two filtered sinusoids. These results show the point estimates provided by

Equation 4.62 are, on average, very close to the true values of the variance.

The accuracy of the variance estimates indicates that confidence intervals for the

frequencies can be established directly from the variance estimates using Equation 3.148

from Chapter III. That is, once k! has been estimated, the variance in the frequency
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estimate can be calculated from

L~ [aP(o)] T ga I--(ao)1

_____F (4.63)

where gp() is the function relating the LP coefficients directly to the frequencies. In partic-

ulw, for a single complex sinusoid derived from the constrained LP coefficients, gp0 and

V{} take the form

fl = -1 tan- {a,[O]}; V{f 1 } ; 7- 2 (l + a,[0]2)- 21{a,[O]} (4.64)

Figure 4.10 shows results of using this equation to establish confidence intervals for the

frequency of a single sinusoid in the passband of filter. Thus, from the point estimates of

the frequency, f], and standard deviation, &f, the true frequency was within one, two and

three standard deviations of the estimate about 65%, 95% and 99% of the time.

For an EW receiver, knowledge of the estimation accuracy can improve the accuracy

of the classifications. Currently, the signal descriptions employed by typical EW classifi-

cation systems consist of range limit descriptions for the signal parameters. These range

limits are usually constructed with the 'worst-case' measurement assumption of a receiver

operating at threshold. This assumption forces the classification system to extend the

range limits of the signal models which induces regions in which the ranges overlap within

the models. This overlap in ranges, in turn, causes multiple identifications to be made for a

single signal. Providing an assessment of the goodness of an estimate, along with the point

estimate itself, can lead to improved classification accuracies by allowing the width of the

classification range limits to be compressed or expanded to match the actual measurement

accuracy. Finally, providing an estimate of the 'goodness' of the measurement will allow

poor measurements to be discarded prior to classification.

4.3.8 Simplified Single Sinusoidal Estimator. Examination of the simulations

shows the effect of decimation by R = 16 is to decorrelated the noise such that the LS

estimates of & for K!w ; cr2I are as accurate as those attained using the true noise

4-26



variance Estimation Accuracy

200 -- Var Ea

0

c140

120
001 

053

200

1800

SN 120 
0253

00

180

14 0 - - a s r ~ ~ j

0 -.- 

-a Vat 

-s 

- ReaaolJ

2i0r .... Varanc EEamtio 
,f Co plP Co ffci n s:Vaia c

e t a Te d Va N R i ntr v l s o f .Adg fr z a n E e d et - r e a f lz t o s o0 o i h T e it r ti 0 i soe d c n e r e c T ru e v a ri a n ce fo u ni f o(b)B SNRsoi a lculat [lo a, SNI? l(loB 0(2 2 0 Avg Es 130~V

Figre .9 Variac Eststio 1 2 2 = 47r/3],

4f-27 lx L C efcinS



Frequency Confidence Intervals

1

oU .9

I-
'B

v0.8

a) ,

E ;\
0.6.

aR0. ---- K-1
-.. K=1

K=2

00 5 10 1'5 2'0 2'5 30

SNR (dB)

a: Parameters: [bi = 1, fi = .0234, 01 = 7r/3] and SNR = 5dB.
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Figure 4.10 Frequency Confidence Intervals: Confidence intervals established at SNR
intervals of .5dB and frequency intervals .005 from 500 independent realizations
of M = 32 samples of sinusoids in noise. LP coefficients estimated by ILS algo-
rithm. Ten iterations allowed convergence. Confidence interval: lIp(i) - fpj < k!
for k = 1,2,3. SNR calculated as SNR = -10 1ogl 0(2a').
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covariance. This approximation will allow an extremely simple form of the LS estimator

to be implemented for a single sinusoid.

From Equation 4.40, with P = 1 and a[O] = 1 the LS fixed point estimator for

a[1] = a = -e 2 1, can be written as

H -

a =+ - 1 (4.65)

Here yj = [ [M-1] ... [j1]]T and YO = [9[M-2] ... [O]]T while A is the M-P by M matrix

of LP coefficients defined in a manner similar to the A matrix of Chapter III. Examination

of the matrix product shows Af'iA has the following characteristics:

2 ifk=I
L if I k + 166)

il a-* ifk-1=l

0 otherwise

Using a Cholesky decomposition, AHA4, = RiR' where Ii is an M - 1 by M - 1 lower

triangular matrix given by f - ifrmnn

mn = = if n = - (4.67)

0 otherwise

Expansion yields [R] = [a]m-cm, where the real quantity, cm,,, is zero for m > n

and
Cmn (1)(,-n) (.8

for n < m. Thus, cm, is a known constant derived only from the real constants defined in

fm." Defining the M-1 by M-1 matrix D of constants so that dkt = [D]kl = "n=l Cnkeni,

4-29



then the matrix inverse calculations can be written as

1 M-11

[H] = E = [[*]dkfdl[A]'  (4.69)

Thus, by constructing the vectors f), and ij, from j and Y2 as {vt,}m a"{yi}m and

{ U} 7 fl = dn{ o},,, a simplified estimator for ii, can now be written as

P H P-1 D

=j f)H- (4.70)

The matrix inverse operation has been replaced by a simple vector-matrix-vector product

operation. This efficient representation is useful when the number of data samples, M,

to be processed becomes large. The development of this simplified estimator for a single

complex sinusoid is an original contribution of this research and has been submitted for

publication (96).

4.4 Summary

In this chapter, the ILS fixed point estimation technique was successfully used to

estimate the frequencies of sinusoids at the output of the digital EW receiver being de-

veloped by AFRL/WL (16). After discussing the general receiver architecture, models

were derived for the real and complex data output from bandpass filters and represent an

original contribution of this dissertation. The model derived for the complex data shows

the effective decimation rate of the output data be doubled over that of the real model

without a loss of frequency estimation accuracy.

A new method to efficiently implement the receiver as a nonmaximally decimated,

UDFT polyphase filter bank is then derived based on the complex data model. This deriva-

tion has been accepted for publication and has been assigned Serial Number 08/816,951

by the U.S. Patent and Trademark Office (99).

Based on this architecture and the complex data model, a complex form of the

LP general linear model is developed for estimating the frequencies of P real sinusoids
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residing in the filter passband. This new form of the LP general linear model is an original

contribution of this research and has been submitted for publication.

Identification of the LP coefficients is then shown to be related to ML frequency

estimation and an ILS fixed point estimator is derived for estimating the coefficients.

For one sinusoid, simulations indicate the ILS estimator attains the CRLB for frequency

estimation at SNRs significantly lower than those currently employed in the receiver. The

ILS estimator was then successfully used to estimate the frequencies of two time-coincident

sinusoids within the filter passband; a capability which currently does not exist in the

receiver.

This chapter concluded by showing the PDF of the complex data can be approxi-

mately modeled as a complex Gaussian PDF. Using this approximation, a simplified fre-

quency estimator of a single sinusoid was derived which effectively removed the requirement

to invert an M - 1 square complex matrix. This new single frequency estimator for com-

plex sinusoids is an original contribution of this dissertation and is currently under review

for publication.

Finally, in addition to providing the Air Force with a complete probabilistic charac-

terization of their next generation digital EW receiver system, this dissertation derived a

new method of estimating the frequencies of filtered sinusoids. The frequency estimators

developed as a result of this research will greatly extend the operational envelope of the

EW receiver.
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V. Conclusion

5.1 Introduction

The dissertation investigated the problem of estimating the parameters of real and

complex filtered sinusoids in noise. In Chapter III, the general theory of parameter esti-

mation for real filtered sinusoids in noise was developed and used to construct accurate

parameter estimators. The resulting analysis, models, and estimators derived in this chap-

ter have applications across the spectrum of applied science, engineering and statistics. In

Chapter IV, the results of this research were applied to the Air Force's next-generation

EW receiver. The resulting analysis, models, and estimators derived in this chapter led

to an efficient hardware implementation of the receiver while significantly improving the

receiver's operational capability.

5.2 Theoretical Contributions

As shown in Chapter III, the first contribution of this research was a mathematical

model, given by Equation 3.13, for any system required to estimate the amplitudes, phases

and frequencies of real, filtered sinusoids. Specifically, this dissertation showed that the

steady state output of a filter, due to an input consisting of a linear sum of P real sinusoids

in zero-mean, independent, normally distributed noise, can be modeled as the output

from a deterministic system, Ab, corrupted by zero-mean, normally distributed noise, w,

with a covariance matrix, Kw, determined by the filter characteristics. Estimation of the

sinusoidal parameters was recast as the estimation of a deterministic system from the set

of measurements, y, embedded in colored noise and a bound on the parameter estimation

accuracy was derived.

Using this model, a new set of ML estimators for the scaling parameters, b, and

frequencies, f, were derived which correctly account for the correlation in the noise due to

the effects of the filter. This dissertation showed the ML estimator for b, given in Equa-

tion 3.23, can be found via a simple linear regression on the measurement vector y once

an ML estimate of the frequencies, f, is made. The ML estimate of the frequencies, on the

other hand, is independent of b and can be found by optimizing the ML frequency objec-
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tive function, J(f), of Equation 3.25. Since this objective function is a highly nonlinear

function with respect to f, the ML frequency estimator derived in Equation 3.30 involved a

computationally intensive search in the P dimensional frequency based on gradient search

algorithms. Simulations indicate the accuracy of these ML estimators will achieve the the-

oretical bounds provided the correlation in the noise, due to the filter, is correctly modeled.

Failure to incorporate the filter effects in the ML model leads to suboptimal parameter

estimates. The main drawback in using these estimators for an EW receiver is that the

gradient search algorithm employed to provide ML frequency estimates usually required

too many iterations to converge and relied on an accurate initial estimate.

To overcome these drawbacks, the problem of frequency estimation was recast as the

problem of estimating the coefficients of the 2pth order LP polynomial. After describing the

relationship between the LP coefficients and the sinusoids, a linear model, parameterized

by the LP coefficients, was derived in Equation 3.53. This model, which incorporates the

effects of both the filter and the coefficients upon the noise, is the true linear model relating

the LP coefficients to the filtered sinusoids in noise and is an original contribution of this

research (98).

Based on this general linear model, two estimators, based on fixed point theory, were

then derived for estimating the LP coefficients and represent another original contribution

of this research. The ILS estimator, as given by Equation 3.84, was based on an iterative

least squares solution to an over-determined system of equations. The ITLS estimator,

as given by Equation 3.100, was based on an iterative total least squares solution. Simu-

lations indicate both methods provide near-minimum variance, unbiased estimates of the

LP coefficients, and consequently, the sinusoidal frequencies, over a wide range of SNRs.

Furthermore, each algorithm usually took less than ten iterations to converge and was

relatively insensitive to the initial estimate. In addition, the initial coefficient estimate

can be obtained directly within the framework of the algorithms; no additional estimation

routines are required to provide the initial estimates. All other factors being equal, the

ILS method should be preferred over the ITLS method since the ITLS method requires an

SVD of an M - 2P by P + 1 matrix at each iteration.
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This dissertation then derived the exact relationship between ML frequency estima-

tion of the filtered sinusoids and ML estimation of the LP coefficients. Specifically, the

set of LP coefficients which minimize the square error objective function, J(a), defined

in Equation 3.124, was shown to provide ML frequency estimates and vice versa. This

original contribution led directly to the development of the IEGD estimator, given by

Equation 3.127, for minimizing J(a). This estimator provides ML estimates of the LP co-

efficients and, consequently, the frequencies of filtered sinusoids, by employing an iterative

exact gradient descent algorithm to minimize J(a). Simulations indicated the estimates

found via the IEGD algorithm do minimize the LP objective function thus providing ML

estimates of the LP coefficients and, consequently, the frequencies. However, this algo-

rithm usually required too many iterations to converge and was too sensitive to the initial

estimates to be of much use as a real-time frequency estimator.

This dissertation then proved the equivalence between the IGLS algorithm, previously

presented as a method of minimizing the LP objective function, J(Ct), and the ILS fixed

point estimator of Equation 3.84. This proof is an original contribution of this research

for it correctly casts the IGLS algorithm as a fixed point estimator, not a minimization

algorithm.

In addition, the IQML algorithm was proven to be exactly equivalent to the ITLS

fixed point estimator of Equation 3.100. This is another original contribution of this disser-

tation for it correctly casts the IQML algorithm, widely accepted as the premier method of

minimizing J(a), as a fixed point estimator, not a minimization algorithm. In addition, for

the simulations completed, the ILS/IGLS algorithm actually produced, on average, more

accurate frequency estimates than the more complicated ITLS/IQML algorithm. The

IQML algorithm requires an eigenvalue decomposition of a P + 1 by P + 1 square matrix

at each iteration whereas the IGLS algorithm only requires the inversion of a P square

matrix. Thus, if the small degradation in performance over the IEGD can be tolerated,

the ILS/IGLS estimator should be preferred over the ITLS/IQML estimator for providing

point estimates of the LP coefficients and, consequently, the sinusoidal frequencies.

Finally, a method was developed for bounding the estimation error of the LP coeffi-

cient estimates, and consequently, the frequency estimates, based strictly on one realization
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of the measurement vector. Specifically, as shown by Equation 3.165 , this dissertation

proved the point estimate of the covariance matrix of the LP coefficients is unbiased. This

derivation is an original contribution of this research and allows the estimate of the LP

coefficient variance to be transformed into an unbiased estimate of the frequency covari-

ance matrix. In addition, as shown in Equation 3.147 and Equation 3.148, from a single

estimate of the variance of the LP coefficients and the frequencies, the estimation error

can bounded and confidence intervals constructed. Simulations indicate these estimates

of the variance can be used to gauge the accuracy of the point estimates of both the LP

coefficients and the frequencies. This gauge can then be employed to develop confidence

intervals to aid any decision making process based on a single set of measurements.

5.3 Applied Contributions

In this dissertation, a new architecture, assigned Serial Number 08/816,951 by the

U.S. Patent and Trademark Office, was derived to implement a a nonmaximally decimated

UDFT polyphase filter bank. This architecture is based on a new data model relating

parameter estimation of real sinusoids to the parameter estimation of complex sinusoids

and is an original contribution of this research (99). Specifically, as shown in Figure 4.3,

this new data model transforms the estimation of the parameters of real sinusoids in real

colored noise to the estimation of the parameters of complex sinusoids in complex colored

noise. Estimation of the real sinusoidal parameters is recast as the estimation of the

deterministic linear system, Acb, from a set of complex measurements, y embedded in

colored noise. Simulations for the EW architecture indicate this transformation can be

attained with negligible loss in estimation accuracy attributable to the complex model.

In addition, this new data model shows how complex data, originating from a sum

of real sinusoids in real noise passing through a complex bandpass filter, can be decimated

at twice the rate of the real data without a loss in parameter estimation accuracy. This

improvement in the decimation rate, exploited by transferring the decimators to input of

the filterbank as shown in Figure 4.3, allows a significant reduction in the speed at which

the filters, IDFT matrix, modulator and parameter encoder must operate.
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Based on this new model for a complex representation of real sinusoids, a new set

of ML estimators for the scaling parameters, b, and frequencies, f, were derived which

correctly account for the correlation in the noise due to the effects of the filter. This

dissertation showed the ML estimator for b, given in Equation 4.36, can be found via

a simple linear regression on the measurement vector y once an ML estimate of f is

made. As with real sinusoids, the ML estimate of the frequencies, on the other hand, is

independent of b and can be found by optimizing the ML frequency objective function,

J(f) of Equation 4.37 .

Since this objective function, is a highly nonlinear function with respect to f, the

problem of frequency estimation was recast as the problem of estimating the coefficients

of the ph order complex LP polynomial given by Equation 4.40. After describing the

relationship between the LP coefficients and the complex sinusoids, a linear model, pa-

rameterized by the LP coefficients, was derived in Equation 4.54. This model, which

incorporates the effects of both the filter and the coefficients upon the noise, is the true

linear model relating the LP coefficients to complex filtered sinusoids in noise and is an

original contribution of this research (97).

Identification of the LP coefficients was then shown to be related to ML frequency

estimation and an ILS fixed point estimator was derived for estimating the coefficients.

For one sinusoid, simulations indicate the ILS estimator attains the CRLB for frequency

estimation at SNRs significantly lower than those attained by the estimation algorithm cur-

rently employed in the receiver. The ILS estimator was then successfully used to estimate

the frequencies of two time-coincident sinusoids within the filter passband; a capability

which currently does not exist in the receiver.

Finally, the results of this applied research showed the PDF of the complex data

out of a given channel of the EW receiver filterbank, can be approximately modeled as a

complex Gaussian PDF. Using this approximation, a simplified frequency estimator for a

single complex sinusoid was derived which effectively removed the requirement to invert an

M - 1 square complex matrix. This new single frequency estimator for complex sinusoids

is an original contribution of this dissertation and has been submitted for review (96).
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5.4 Summary

The results of this research, whether taken individually or collectively, represent

a major contribution to the theory of signal processing and parameter estimation. In

particular, this research builds the bridge connecting sinusoidal frequency estimation with

LP linear system modeling and derives the connection between real and complex sinusoidal

parameter estimation. In addition, the analysis, models and estimators constructed as a

result of this connection will significantly improve the operational envelope of the Air

Force's next generation EW receiver.
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Appendix A. Vector-Matrix Differentiation

This appendix derives the identities involving the differentiation of matrix products.

A.1 Definitions

Let 0 be P dimensional vector with 0 = [01 ... OR] T . Let x be Q dimensional vector

with x = [xI ... xQ]T where each element of x is a function of 0. That is xq = g,(O). The

first and second derivatives of x with respect to 9, and 9, are defined as

, = J,= 0,08--7(A. 1)aq l x]ao q ___90

Let U be a K by L dimensional matrix where each element of U is a function of 0. That

is uk, = gk, (6). The first and second partial derivatives of U with respect to 9i and 9, are

defined as
q u] auA'1 a02 U9U

-O U a , . [ ' a90 a9 j _ ae u ,, (A .2 )

A.2 Matrix- Vector Product Derivative

Let U be an M by N matrix and x by an N dimensional vector. Let u,,,, and x,

be functions of the variables 9i and 8j. In addition, let z = Ux. Then

azm au a9x, az 9 au Fax]0 7 n1 
-

X + Um ' - = X+U (A.3)

while the second partial derivatives become

a2 zm N a2 um,, a2  + aUM,, x,, au ,, , axa8,a8 = a . xn+ + m' + (A.4).=ja as, asj ,,,aojasj asi 0 a8o as

aiz0 FI~ ~ ~ + a9ui F ax 1 F a(u iFaxaoooo [ooaoJx+g[ aoaJ [o5+ [ A + [J (A.5)
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A. 3 Matrix Product Derivative

Let U and V be L by K and L by L matrices respectively. Let ukij and vjm be

functions of 0 and define the matrix C as C = UTVU. Then

L L 0vmt 5k~ (.6

82 811kC avim a1k um
ao LL ap8 0 Vm Um,n + Uk a Urn + VI,, m A6

a2 ~ , Ck~ L9 L
1 

92U, ui m 49Urn l,n

+ Um,n + Uk ,1 Um,n + Uk,1

49Uk 49Um,n a9vi,m ummn .92 tUm,n
+~VI'M P + UkJ q p + Uk,IVI,m - P (A. 7)

In matrix nomenclature, the partial derivative with respect to OP, is

ac ='U VU+UT a ]U+UTV aul (A.8)

while the partial derivative with respect to O, and Oq becomes

a2c _ _2Ul]TrVU FalT raVi U aT Vaulaopaoq I aOq 0 ao~i'q Iao Lao I
al V U+UT &21 U+ UT __] ra

+ ~ I a~p10vo [8V]p aU

+ l V ru +T4aVI au+UTV [a2 U] (.9
laU] a TU LaOq I~ l Iaopaoqi (AI

A.4 Inverse Derivative

Let C by a symmetric, invertible matrix where each element is a function of 0,. Then

(40 :73-75)
ac-' -C-1aI- (A.l10)

and

____1 [ac-11 iaci C1--1 [82C] _- r -aci [ac-1 A.1
a ao, --5a0-' J C0 I C Laaj I C 3- La5] ae (I l
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A. 5 Vector-Matrix- Vector Product Derivative

Let x be K dimensional vector and let C be a K by K positive definite matrix.

Furthermore, let the scalar J be defined as J = xTC-'x. Then

8J K K aX, C-1 ac.. + -- 1 X(-% = Z -C.,° n+m mn, 0i -. 2,. (.1.2)
Eo E~$ , mn M~ 90Xmm

a2j K K 8 2 Xn c1 19x- C Xn +X, 0n 1 8Xn

80+0 ZZ 80 8-0_p X + 8 00 n
P,0 n n=191

a0 8papaoq a0p a~q
az,,,_ O. 0C 8C.0 Ox

+ -- ±C ---' + x.9m , 9Xn + XmnCV a2X0 (A.13)

80 q mno 89 89 p mn 80 80 (.13

In vector-matrix notation, the partial derivative with respect to 0P becomes

ai [9X C]T XT9C-

=2 - C'z+- X (A.14)

The partial derivative with respect to OP and 0q can be written as

apaq 2- +2 [c"CJ [8'J x + 2 TC1 .

ax] T [C-1] X r [a2c-'] (A.15)
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Appendix B. Maximizing ML Objective Functions

This appendix derives the scalar and vector identities pertinent to optimization of

real objective functions with respect to real and complex vectors. These identities are then

used to obtain ML estimators for real and complex data.

B. 1 Real Data ML Maximization

Let b = [b, ... bQ]T be a vector of Q real parameters. Let x = Ix1 ... XQ] T be a vector

of constants and let A be a square Q by Q matrix defined by [A]kL = aki. Finally, let J be

a scalar function of b so that the gradient of J with respect to b is defined as

VbJ= ... j ]T (B.1)

The results of applying this gradient to vector products and vector-matrix-vector products

is given in Table B.2. With 0T = [bT; fT] and A a function of f only, the likelihood

function is defined as

p(y; 0) = [27r]-*JgwK-I exp[--(y - Ab Ab)] (B.2)
2

Taking the natural logarithm yields the log-likelihood function L(y; 0) as

L~;)= Mln2r 1 lng l1 IK,[

-(y; ) = ln(2r) -- IKI - [y - Ab]TKgw][y - Ab] (B.3)
2 2 2

Assuming Kw is known, then maximizing L(y; 6) is the same as minimizing

JR(O) = [y - Ab]T gV, [y - Ab] (B.4)

Expanding yields

JR(O) = yTKwlY - 2bT AT VL + bT ATKw7Ab (B.5)
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Taking the gradient with respect to b yields

[VbJR(e)] = -2ATK jy + 2AKKWAb (8.6)

Setting equal to zero and solving for b yields the ML estimator which is found via a linear

regression on provided f is given.

bML = [ArKwlA]-'A Vgly (B.7)

Substitution of bML into JR(O) yields the ML frequency objective function.

JR(f) = yTKY - yT Kl A [AT Kw 1 A] -' AT KVly (B.8)

This function must be minimized with respect to f to obtain ML estimates. Once iML is

found, then bML is found via Equation B.7.

B.2 Complex Data ML Maximization

Let the complex number bi be defined by real scalers biR and bil so that bi = biR +jb1

and let i be a complex number defined in a similar fashion. Let J be a function of a

complex variable, bi. The goal is to find i so that aJ/i9b = 0 indicating a stationary point

with respect to b (40:517-519) (24:890-894). In general, J is not an analytic function and

cannot be differentiated with respect to b using the normal rules of differential calculus.

Instead, the following definition will be applied (40:517)

- = -[a J (B.9)

Note, the derivative is zero if and only if the partial derivative of each of the real and

imaginary parts is identically zero. Using this definition, scalar functions defined by J

can be minimized over biR and bi, simultaneously (40:515-520). Table B.2 defines the

appropriate scalar derivatives used for maximizing the complex ML objective function.
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Now, let b = [bl ... bQ be a vector of complex parameters and let i = [il ... jQ]
T

be a vector of complex constants. Furthermore, let J(b) be any scalar function of b and

define the gradient of J with respect to b as the vector

V [- Q (B.10)

The results of this gradient, applied to a vector product and a vector matrix product, are

given in Table B.2 and these definitions will be used to minimize the ML objective function.

With 0 T = 1 T;f j] and A a function of f only, the likelihood function was defined as

p( ; 0) = [21]- M Iw- 1 exp[-( 9 - Ab)Kwj-(t - Ab)] (B.11)

Taking the natural logarithm yields the log-likelihood function L(y; 0) as

L( ; 0) = -Mln(21r) - IlkwI - K - b] K 7 - Ab] (B.12)

Assuming kw is known, then maximizing L( ; 0) is the same as minimizing

Jc = [ V (B.13)

Expanding yields

Jc (0) = 'A- bb --) w + KZA b (B.14)

Taking the gradient with respect to b yields

[V6 J(6)] =-[AHk-lI]* + [AHf<-,1A (B. 15)

Setting equal to zero and solving for b yields the ML estimator which is found via a linear

regression on ,I provided f is given.
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Table B.1 Derivatives and Gradients

Real Gradients

Component Vector
Function Derivative Gradient
J =bx =1xkbk "b =Vbjl X

LTAL _ zQ I-'Q 1bak~b _ Q T
J = btI b = = Z41 biakJb. = 1 akibk + EL=i ai 1b, [VbJ ] = Ab + Ab

Complex Scalar Derivatives
Component Vector

Function Derivative Gradient
J = 6i = biR + jbi D - 18 (bR+Jbil) = (biR+Ai) 1 N/A

b, 2 ObiR Db./
J = = biR - bil ! L 8(b, R-jb,) _-j 8(bR-jb ) = 0 N/A

b, -b1  b, 2 absR Oba -

: 8J _. = [XR -jx,,] - I[Xi +jXiR] = i N/A

Complex Gradients

Component Vector
Function Derivative Gradient
J = 6Hrb = = b J -Ob Vb("bH) = "

j ~ k _ AA) = FQ z?-1 =aLl~ -z= k [z?..- ak1b 1 'VbbH [AHb1*I= ~8bi =1k

bMUL =[i Hk- ]'A ki (B. 16)

Substitution into Jc(O) yields the ML frequency objective function.

Jc(f) H -9- H K _lA [AH k-li' AH KI y (B. 17)

This function must be minimized with respect to f to obtain ML estimates. Once 'ML is
2

found, then bML is found via Equation B.16.
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Appendix C. Linear Prediction Coefficient Constraints

This appendix derives the Forward and Backwards Linear Prediction (FBLP) con-

straints and the symmetry conditions placed on the LP coefficients for the real and complex

forms of the LP model. To impose the sinusoidal constraints on the LP coefficients, define

the N by N identity matrix as IN and the N by N 'Backwards' identity matrix as IBN,

where [IBN] = b[N - k - I + 1]. Finally, define the N element zero vector as oN and

Wk = 27rfk.

C.1 Real Sinusoids

C.1.1 FBLP Constraints. Let s[m] be the sum of P real sinusoids in noise and

suppose the Forward LP coefficients solve

L

Ea[lls[m -l] = 0 (C.1)
1=0

for L > P. For a set of M samples, with m = 0 ... M - 1, substitution yields

a[0) cos(wA:m + E) = - 1h a[l] cos(wkm + kk) cos(wkl)I= (C.2)
0 = , a[l] sin(wkm + k) sin(wkl)

for m = L. .. M - 1. Now consider the Backward LP model given by (87:418-422)

L

b[O]s[m - L] = - b[l]s[m - L + 1] (C.3)
1=1

For a set of M samples, substitution yields

b[0] cos(wk[m - LI + €) = - jfl b[l] cos(wk[m- L] + (A) cos(kl))

0 = - = b[l] sin(wk[m - L] + kk) sin(wkl)
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for m - L = 0... M - L - 1. Thus, with b[t] = a[l], real sinusoids solve both the forward

and backwards LP models.

1 0a[]s[m-1] = 0 form=L...M-1

Zf=Oa[l]s[m+l] = 0 form=0...M-L-1

C.1.2 Symmetry Constraints. For the general 2 Pth order LP model, the real LP

coefficients, alp], solve

2P P 2P

y: ap]s[m - P] = 0 E yy ba p] cos(wk[m - p] + Ok) (C.6)
p=O k=i p=O

Expanding the real sinusoid, s[m], yields

r2P 
2P1bi COS(kM + O) -' a[p]COS(wkp) + bk sin(wkm +¢) E a[P]sin(W1,P) 0

p=O P=0

(C.7)

For this equality to hold for all wt and m requires (8)

2P 2P

E a[p] cos(wkp) + a[O] = a[p](ekP + e-,P) + 2a[O] = 0 (C.8)
p= 1  p=i

2P 2P

E a[p]sin(wkp) = Za[p](eiwkP - e - j 'P) = 0 (C.9)
p=i p=i

Solving these equations simultaneously yields
E2P E2P(C 10

-P= a[p](ejwbP) + a[O] = 0 and (=1 aC](e-P) + aO]C.O)

Multiplying the second summation by ej 2Pw- and expanding both produces

a[0] + a[1]ewk + a[2]eJwk 2 ... a[2P - 1]eij w( 2P - ') + a[2P]ejWk2P = 0(C.)

a[2P] + a[2P - l] e.k + a[2P - 2]e'" 2 ... a[1i]wk(2P- 1) + a[O]ejWk2 P = 0

Since these equalities must hold for all wk then a[p] = a[2P - p] for p = 0 ... P. Now

let ct = [a[O]a[1] ... a[P]]T be a vector containing the unique LP coefficients and let a =

[a[0] ... a[2P]]T be a vector containing all the LP coefficients. Then a is related to a via
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the linear transformation a = Ba where

Ip Op
B O 1 (C.12)

IBp op

The search of the LP coefficients, contained in a, of a 2Ph order model has been reduced

to the identification of the P unique coefficients contained in a.

C.2 Complex Sinusoids

C.2.1 Forward Backward Linear Prediction. Let 9[m] be the sum of P complex

sinusoids and suppose the Forward LP coefficients solve

L

E [l].[m - 11 = 0 (C.13)
1=0

for L > P. For a set of M samples, with m = L... M - 1, then

L

a[0li[m] = - j a3l].[m - 1] (c.14)
1=1

Substituting for 9[m] gives, for each frequency

L

a= [0 [i]d'e - k '  (C.15)

for m = L ... M - 1. Now consider the backward LP model (87:418-422)

bf0]n [m - - b[l]g[m - L + 1]* (C.16)
/= 1

Substitution for the complex sinusoid yields

L

b[0]e -  -[mL] = - z ( [l]e-w(m-Lje-jk (C.17)
t=1

C-3



Letting n = m - L and d[/] = b[l] provides

L

Sa[l][n + 1] = 0 (C.18)
1=0

for n = 0... M - L - 1. Thus, a complex sinusoid solves both the forward and backward

LP model
EL0 a[y] [[m-]] = 0 for m = L... M - 1

ZLoa[l][g[M+l]] =o form= ... M - 1 -L

C.2.2 Symmetry Constraints. Let 9[m] be the sum of P complex sinusoids. The

set of P complex LP coefficients, iTh], solve

P P P

E iip]g[m - p] = 0 = bkejwln E a[p]e-iwkP (C.20)
p=O k=1 p=O

To be zero for all wk and bk $ 0 requires

EP, a[p]e- u'A + a[0] = 0 and EP, a[p]*eiwkP + a[0]" 0 (C.21)

Multiplying the first summation by ejw&P and expanding yields

a[0]ewj-.P + [1]ew(P-l) ... 5[P - 1]ei'"' + a[P] = 0 (C.22)

a[P]*eiwP + a[P - 1]*ejiw(P-l) ... a[i1]*ei + a[0]* = 0

Since this equation must hold for all Wk, this implies a[p] = d"[P - p] for p = 0... P. In

addition, for P > 1 complex frequencies, it can be shown (63) when [=_ = ir(21 + 1)

for any integer 1, the real part of a[0] = 0. Conversely, when EPZ U.k = 21rl for any integer

1, the imaginary part of a[0] = 0. To impose these constraints, let P be an even number

and N = P/2, then a[N] is a real number since [N] = a[N]*. Imposing the complex

conjugate symmetry constraints yields the real vector a = [a[0] ... a[P]]T where

a[0] = aR[N] (C.23)

a[k+1]=aR[k] fork=0...N-1 (C.24)

a[N+1+] =a[l] for l=0...N-1 (C.25)
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Only P + 1 coefficients determine a completely. The LP coefficient vector aT= [ak, aT]

can be derived from a as a = BEa where BE is the 2P + 1 by P matrix

ON IN ON

1 oT oT
ONIN ON

B = N IBN ON (C.26)
ON ON IN

0 OT oT

ON ON -IBN

Finally, if P is an odd number, let N = (P - 1)/2. The symmetry constraints can be

imposed by defining the vector a as

a[01 = aR[N]

a[k + 1] = aR[k] for k = 0...N- 1 (C.27)

c[N+l+1]=aj[] forl=0...N

The LP coefficient vector aT = [aT, aT] can be derived from a as a = Ba where B is the

2P + 1 by P matrix

ON IN ON ON

1 o 0 0 ON

1 oN 0 ON

B = ON IBN ON ON (C.28)
ON ON IN ON

o oT oT 1

0 OT o -1

ON ON -IBN ON

For both the real and complex sinusoids, imposing these constraints yields the true form

of the LP general linear model

G(a)YBca = G(a)Ycat = e(a) (C.29)
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Appendix D. Fixed Point Theory

This appendix summarizes the Fixed Point theory pertinent to this dissertation.

D.1 Definitions

D.1.1 Linear Space. Let R be a given field and let S be a nonempty set with

rules of addition and scalar multiplication which assigns to any x, y E S a sum such that

x + y E S and to any x E S and c E R, a product such that cX E S. Then S is called a

linear space over R if the following properties hold (26:28), (54:141):

0 For an vectors x,y,w E S, then (x + y) + z = x + (y) + z).

e There is a vector in S, called the zero vector, 0, for which x + 0 = x for any vector

in S.

* For each vector x E S, there is a vector in S, denoted -x, for which x + (-x) = 0.

0 For any vectors, x, yE S, X+y= y + x.

e For any scalar c E r and any vectors x, y in S, then c(x + y) = cx + cy).

e For any scalars, c1, c2 E R and X E S, then (cI + c2 )x = C1 X + c2X.

e For any scalars, cl,c 2 E R and X E S, then (cIc 2 )x = cj(c2X)

e For the identity scalar 1 E R, then 1x = x for any vector x E S.

D.1.2 Euclidean N-Space. Euclidean N-space consists of all ordered N tuples,

called vectors x = [xI ... xN ]T, of real numbers such that R N = {XIxn E R} (58:18). The

ith element of x will be denoted xi. Vector addition is defined as z = x + y so that

zi = xi + yi. Scalar multiplication is defined for a E R as z = ax so that zi = axi. Using

these operations, it can be shown Euclidean N space is a vector space of dimension N over

the field of real numbers (26:29).
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D.1.3 Metric Space. Let S be a nonempty set and let x, y E S. A distance

function, d(x, y) E R, is called a metric on S if the following hold (33:1),(58:21)

d(x,y) _ 0 for allx, yES

d(x,y) = 0 iffX=y (D.1)

d(x,y) = d(y,x) for allx, yES

d(x,z) < d(x,y)+d(y,z) for allx, y, zES

For Euclidean N-Space, the distance metric is defined as

N

d(x,y) = lix - Yl = (xi - y) (D.2)
i=1

In addition, the inner product is defined by (X, y) = xiy, = XTy.

D.1. 4 Complete Metric Space. A sequence, {xk} E RN, is called Cauchy if, for

every real number E > 0, there is an integer N such that, for integers, 1, k > N then

Ilxk - xll] < E (58:45). A metric space is said to be complete if and only if every Cauchy

sequence {xk} C RN converges to a point in RN. Since a sequence {X1} E RN converges to

a point in RN if and only if its a Cauchy sequence, Euclidean N-space, under the distance

metric defined above, is a complete metric space (58:45-46)

D.1.5 Banach Space. A normed space, S, is called a Banach space if S is a

complete with respect to the metric space defined by d(x, y). Thus, the Euclidean space

defined above is a Banach Space.

D.1.6 Open and Closed Sets. Let A be a subset of RN. Then A is an open set if,

for each x - A, there exists some real number E such that for each y E RN which satisifies

d(x, y) < e, then y E A (58:34-35). A set B C R ' is said to be closed if its set complement

in RNr is open (58:37).

D.1.7 Bounded and Compact Sets. Let A be a subset of RN. Then A is bounded

if and only if there is some arbitrarily large constant K such that l]xii < K for every x E A
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(58:62). Let A be a subset of the Euclidean space RN. Then A is said to be compact if A

is bounded and closed (58:62).

D.1.8 Continuous and Bounded Functions. Let A be a subset of RN. Let £ be

a mapping such that £ : A - RN and let x0 E RN. Then £ is continuous at x, if (58:79)

lim £(x) = £(Xo) (D.3)

Furthermore, £ is said to be bounded on A if, for every X E A, there exists some finite K

such that Ii£(x)II < K.

D.1.9 Fixed Point. Let X, E S, and let the function £ be defined on S. Then x,

is a fixed point of £ if £(zo) = x,.

D.2 Fixed Point Existence Theorems

D.2.1 Schauder's Fixed Point Theorem. Let S be a compact subset of a Banach

Space and let the function £ be a mapping such that £ : S --+ S is continuous and bounded

on S. There exists a fixed point, X, E S such that £(xo) = x, (33:152).

D.2.2 Brouwer's Fixed Point Theorem. Let S be the subset of R' consisting of

all vectors x such that jzII < 1. If the function £ is continuous on S, then there exists a

fixed point, Xo E S such that £(xo) = xo (33:116).
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Appendix E. Objective Function Gradients

This chapter employs the identities from Appendix A to derive the gradient descent

algorithms for minimizing the ML frequency objective function and the LP coefficient

objective function.

E.1 ML Frequency Objective Function Gradient

From Chapter III, the ML estimate for f maximizes an objective function of the

following form function J(f) = xTC-lx where f =f 1  fp]T , x = ATKwly, and C =

ATKwlA. Here, only A is a function of f.

cos[21rfj(M, - i)I for j = p

Ai sin[27rf j(Mo-i)] forj=P+p (E.1)

0 otherwise

for p = 1 ... P and i = 1 ... M. In this case, the partial derivative with respect to fP

becomes
= J -21r(M. - i) sin[21rfj(Mo - i)] for j = p

• -27r(Mo-i)cos[27rfj(Mo-i)] forj=P+p (E.2)

0 otherwise

In a like manner, the partial derivative with respect to fP and fq becomes

-47r2(M - i)2 cos[27rfj(Mo - i)] for j = p and p = q
&A 4r 2 (M -i)sin[27rfj(M, - i)] for j =P +p and p = q (E.3)

0 otherwise

Thus, using the results from Equation A.3, and Equation A.8

ax [ikj T KY a = [a]T (E.4)a- =O -J Kw'y; -- = KwA + AT~'L-p (E.4)
fP aP [a1 EaE-
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while, from Equation A.5 and Equation A.9,

&2af X a2 A Tq Kw y (E.5)afpafq Lafptafql
_____C ad2AlT r8A ]T f'[,Al

afpafq LafpafqJ K wl A+ - jP K f+ ol [,9A ] T K ,A TKI[9
+ K' +A T Kw [OfpafqI (E.6)

By employing Equation A.14 and Equation A.15, the partial derivatives of J(f) with

respect to fP and fq can now be written

49J []T ]T + TOC - 1afP =-I 2 af -p X(E.7)

,_' r 2 f 1T  + ro[lT[ o 7l [=2] [2C3-8fpafq I a.fpaf, - Ix afP. I. fq .Ja-- TC - 1  ]

+ [8X] T  CI] +X a X '+XT [ [ac1L 4] (E.8)

E.2 ML Objective Function Gradient

From Chapter 3, the LP objective function to be minimized has the form J(a) =

xTC-lx where x = Ya and C = ATKwA. Here the M by M - 2P matrix A is defined

as

a[0] 0 ... 0

* a[O] ... 0

A a[2P* 0 (E.9)
0 a[2P] ... a[0]

0 0 0 a[2P]

Now define the matrix Pp as the M by M - 2P matrix with

1 fori=j+p

[Rp],= 1 for i = 2P -p+j (E.10)

0 otherwise
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fort = l...M andj = 1...M -2P. Thus, the matrix RP is of rank M forp= 0 ...

and so is the sum of any P such matrices. With a = [a[0] ... a[P]]T, the M - 2P square

matrix A can be written as a rational function of a as

P
A = Ro + Z c[pRP (E.11)

p=1

Finally, define ep as the vector [epli = 1 for p = i, and zero otherwise. Using these

definitions and the results of Equation A.3 and Equation A.5, the first and second partial

derivatives of x with respect to a become

aox a~cy, ax

8cap X[p] x+ Y gj = Y ep (E.12)

,92Xa Y':e + Y =~ P 0 (E. 13)
da[p]Oa[q] = a[q] PeP C[q]

In a similar fashion, from Equation A.8 and Equation A.9, the first and second partial

derivatives of C with respect to a become

__ Kw +_ ATT r Kw 1A
49 = 9 T KwA+AKWfj- = RT KwA + ATKWRP (E.14)

&C (9 [RTKwA+ TKWR,] = R TKwRq + R KwRp (E.15)amap]ia[q) a[q] Pq

Finally, employing the results of Equation A.10 and Equation A.11 for the inverse and

Equation A.14 and Equation A.15 for J(ot) allows the first and second partial derivatives

to be written as

49J(Q) 09 O T CX+ T19C_8Joa) - 2 ax]Clx + 1 a-,-] (E.16)

dcap] da da[p] aI E 6

O'J( - 2 [ X IT dC -l ~ + 2 [ X IT C _[aO4p]%a[q] - a 2 aa-[q] + 9apJ 9-t[q]

Ia, T aC-i T _92C-1+ 2 [ ]. aC-, (E.17)
+ -[q] - +  [p[q]
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Appendix F. Short Time FourIer Transform/Filter Bank Equivalence

This appendix shows how the Short Time Fourier Transform (STFT), evaluated at

K equally spaced frequencies, can be implemented as a filter bank with K bandpass filters

centered at wk = 27rk/K.

Let w[n] be a real, finite causal window of length N. The STFT of a real sequence,

x[m], over this window is defined as (65:714)

N-1

X(m, ejw) = E w[n]x[m + n]e - j n (F.1)
n=O

Usually, the STFT is evaluated at a set of specific frequencies, w = wk = 27rk/K, for

0 < k < K - 1. As such, the STFT can be written as

N-i

Xk (m) = w[nx[m + n]& , o'i (F.2)
n=O

Explicitly, this describes the STFT obtained by sliding x[m] past w[n] one sample at a time

so that the calculation of Xk(m) and Xk(m + 1) represents an overlap of N - 1 samples

of x[m]. In many cases, this maximal overlap is unnecessary in providing an accurate

description of the signal in the time window, w[n]. Instead, the STFT can be defined in

terms of the overlap between two successive blocks of data x[n] as (65:720)

N-1

XA(m) = E w[n]x[Rm + n]e-iwkn (F.3)
n=0

Here, there is an overlap of N- R sample points in the calculation of Xk(m) and Xk(m+ 1).

Now, let h0 [n] be a real, causal, low pass filter of length N. A bank of bandpass filters,

centered at wk = 2irk/K, can be constructed by modulating the prototype coefficients as

hk[n] = ho[n]ea2 lkn/K (F.4)

for k = 0...K- 1. In this case

Hk(e0-) - H (e j~w-2T/KI) (F.5)
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The output of the kth filter, yk[m], to an input, x[m], is given as the convolution sum

N-i N-I

k [m] = E hk[n]x[m - nj = 1: ho[ix[m - nje'J2 kn/K (F.6)
n=O n=0

Now let ho[n] be the causal version of the reversed window win] (65:716).

ho[n] = w[N - 1 - n] (F.7)

In this case, the output of the kth filter can be written as

N-1

yk[m] = 1 w[N - 1 - nlx[m - n]ej21rkn/K (F.8)
rn=0

so that
N-i

yk[M + N - 1] = Z w[N - 1 - n]x[m + N - 1 -n]ewkn/K (F.9)
n=0

Letting I = N - 1 - n and interchanging the order of summation reveals

N-1

yk[m + N - 1] = 1 w[1]x[m + l]j21rk(I- N+1)/K (F. 10)
1=0

Factoring the extraneous phase term and relating to Equation F.3 shows

?k[m + N - 1] = Xk(m)e 21rk(N - 1) / K (F.11)

Now let the output of the kih channel be decimated by a factor R. Then

N-1

!/k[Rm + N - 1] = w[l]x[Rm + l]e- j2"k( ' - N+1)/K (F.12)
1=0

Factoring the extraneous phase term and relating to Equation F.11 shows

,k[Rm + N - 1] = Xk(m)ej 21rk( I - 1 )/K (F.13)

These equations show the STFT, with a data overlap of N - R, can be implemented by

decimating by R, the output of each channel of a filter bank.
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Appendix G. Complex Random Variables and Vectors

This appendix provides the definitions of complex random variables and vectors and

discusses their general properties.

G.1 Random Variables

Let uR[k] and ut[k] represent real samples from separate random time series with the

joint PDF, p(uR[k], uz[k]). Let fi[k] be the complex representation, fL[k] = uR[k] + ju[k].

The squared two-norm of fi[k], denoted Ifi[k] 2 , is defined as (40:500-501)

If[k]l = u[k]*u[k] = uR[k]2 + uj[k]'  (G.1)

where the * denotes complex conjugation. The distribution function for fL[k] is defined in

terms of the joint distribution of uR[k] and u,[k]. That is, for a fixed value ft' = u' +ju,

the distribution function is defined as (87)[17-47]

Ff,(ft° ) = Pr(i[k :_ fto) = P(uR[k] _ uo;ut[k] -_ ut) (G.2)

and is related to the density function fa(fl) as

F ,(i0 ) = f,(fi)dfi = L fu ,, (uR, u,)duRdut (G.3)

Now let T2 be the region defined by

IF:= o < fik] fi'} = {u < UR[k] _< u i} {iu < u[k] < u'} (G.4)

The probability that fi[k] E TI is defined as

P0i2[k] E 11) = f(ii)di =U fuR,u (UR, uI)duRdul (G.5)

The mean of ft[k] is defined as the expected value of each component

h[k] = E{fz[k]} = E{uR[k]} + jE{u[k]} = mR[k] +jmi[k] (G.6)
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The variance of f7[k] is defined as (40:500-501)

V{fi[k]} = E{1L7[k] - fi[k]12 } = E{fi[k12} - If[k] 12  V{uRk]} + V{u,[k]} (G.7)

The correlation between f4k] and fL[l] is defined as

ra.,[k,l] = E{fi[k]f[l]'} (G.8)

and describes how well the values of fi[n] at time samples k and I track each other (87:141).

In particular, if r,,,[k, 1] is zero, then fi[k] and fi[l] are said to be uncorrelated. Additionally,

since V{fi[k]} is equal to the sum of the variance of each component, then uR[k] and ui[k]

are uncorrelated at the kth sample. The covariance of fi[k] and f17l] is defined as

Cov{fi[k],f[L]} = E{(fi[k] - ih[k)(ii[l] - fr[])*} = E{ii[k]f[l]*} - fh[k]'irh[l] (G.9)

In general, if fi[k] and ii[l] are independent, then Cov{fi[k], i[l]} = 0. The converse is not

necessarily true (86:56).

G.2 Random Vectors

Let UR = [uR[M - 11 ... UR[0] and u, = [uI[M- 11 ... u[0]]T be random vectors

obtained from two different time sequences. The complex vector representation for the

two sequences is defined as fL = uiR + jil and the squared two-norm of it, denoted Jf1J2 is

defined as (87:22-39)

IiI~i~i =UUR + uIu (G. 10)

where the H operation indicates complex conjugate transpose. The distribution function

for i is defined in terms of the joint distribution of UR and u,. For a fixed vector i 0 =

u°' + ju', the distribution function is defined as

F&(fi° ) = Pr(it) _ fL = P(UR 5 u'R;uI :_ ut) (G.11)
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and is related to the density function

Fi(fi0 ) = f1 (ft)di = j j u,,u (UR, u)duRdul (G.12)
f-00 cc -cc

Let IQ be the region defined by

I:={tL < U}URtLR< lUIUIU (G. 13)

The probability that fl E I' is defined as

IU' f.~ R f'
P(fl E ,1) f .!()di = Jfu,,u,(UR, uI)dURduI (G.14)

The expected value, or mean ih, of a complex random vector is defined as the expected

value of each component

= E{ii} = E{itR} + jE{fi} (G.15)

where

E{ i]. f= 0(uR[n] + jud[n)fuR,u, (uR, u)duRdu, = mR[n] + jml[n] (G.16)

The correlation matrix for fi is defined as

Rjh, = E{i&H} (G.17)

so that [RjJ[,, = rr,[k,l]. If fi[k] and fi[l] are uncorrelated, then !U,& is a diagonal

matrix with the variance of each time sample on the diagonal. The covariance matrix of

fi, denoted K.&, is defined as

k, = E{(,s - ,h)(,s - r)H} (G.18)

so that

[/AL] k1 = E{(fi[k] - rih[k])(ii[/] - rhf[/])*} (G.19)
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Finally, let A be an N by M complex matrix of full column rank and let b be an N by 1

complex vector. Then, if = Ai + b, where ft is a random vector with a mean of hii. and

a covariance matrix, /f,, then t has a mean, denoted 7hp, and a covariance of matrix,

denoted K9, of (40:502)

7p= Aiizi& + b and Kv = AK4~A' (G.20)

G.3 Wide Sense Stationary

A random process is said to be Wide Sense Stationary (WSS), if the expected value

of fi[n] is independent of n and the correlation function function is a function only of the

spacing between samples (87:140-155).

E{fi[n]} = u a constant and rf [k, 1] = rf,,[k - I] (G.21)

Now let iL be a random vector with correlation matrix R-,i. If i is a WSS sequence, then

[Pq,.,t],, = rf[k - 1] = r [l - k]" (G.22)

This correlation matrix is an Hermitian Symmetric, Toeplitz matrix.
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Appendix H. Complex Normally Distributed Random Vectors

This appendix describes how to represent a real, normally distributed random vector

as a complex normally distributed random vector. Let the vector u be the concatenation

of the M dimensional real vectors UR and u, so that uT = [uT , uT]. Furthermore, let u

be normally distributed with mean, mu, and covariance, Ku, defined by

mu- ; Ku= (H.1)
[mur B A

where A = KuRu, = Ku,u, is a symmetric matrix and B = Ku,u, = -Kuu, is a skew

symmetric matrix. The PDF for u can be written as

p(u) = [27r]-Mguj- '1 2 exp- (H.2)

where x = u - mu. From this form, the inverse of Ku can be written as (40:556-572)

K E -F(H3g u '= =i (H.3)
F E

where E = (A + BA- 1B) - 1 = ET and F = -(A + BA-'B)-'BA- ' = -FT. Then, since

KuKI 1 = I = Kj'Ku, the following identities apply:

AE-BF=I=EA-FB and BE+AF=O=FA+EB (H.4)

Using these identities, the argument of the exponential becomes

xTK u lx = XTEXR + XTFXR - xTFx + xTEx, (H.5)

Now define i = uR + ju and let the complex covariance matrix of fA be Qi = A + Bj.

Furthermore, assume the form of the inverse can be written as [j = C + Dj. Since

Q,&Qu 1 = I = Qit, then I= AC- BD + j(AD + BC) = (CA - DB) + j(DA + CB).
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From Equation H.4, C E and D F so that Q- E + Fj. Thus

iHQ-1iS = XTEx+XTEXT-x x+ XT~fH R-~=XEXR + xEx, - xFx 1 + XFXR

+ j(xrFxR - XTEXR + xREx + xfFxi) (H.6)

Since F = -FT and E = ET then XTFXR = xTFxi = 0 and -XTEXR + XTEx = 0.

Hence, from Equation H.5

XTKElx = X2 SXR + X _X - xT Fxi + XT FxR (H.7)

Finally, the determinant of the covariance matrix can be written as (40:572)

IKul = IAIIA + BA-1BI (H.8)

But, A+ BA-'B = (A- jB)(A-1 )(A + jB) so that

IKul = IAIIQuIIQiaIA-1I = IQ,&I2 (H.9)

Thus, the representation of the complex form of u is given as

p(i) - [27 -Ml( a{ - exp{-.5(fL - - (H.10)

where Qfa - KuR,uR + jKu,uR. Now let k& = 2Q,& Then (83:214)

IQ l = 2-M IKlI (H.l1)

The complex form of u, that is fi, is given as

p(fi) = [7r] - m Ik I- ' exp{- (it - rin-,)M k'(it - ihj&)} (H.12)
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Here kf1 = 2(KuRuR, + JKUuR,). For each element of the covariance matrix, for k, I

1 . M, then it1 and tLR are uncorrelated since

COVIUR[k]UR[l]} = Covjuj[kjuj1 ]} and CovfuI[k]uR[Il] = -CovIuR[k~ur[I]} (H.13)
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Appendix I. Alternate Architecture

This appendix, shows how the proposed method of implementing the nonmaximally

decimated polyphase UDFT filter bank, though architecturally different, is mathematically

related to the method proposed by Rabiner and Crochiere when the decimation factor M

is related to the number of filters K by K = FM for integer F (55).

L New Architecture

As shown in Figure 4.3 the new architecture for implementing the nonmaximally

decimated UDFT filter bank is to zero pad each polyphase component filter with F - 1

zeros and decimate, by M, the input signal across all K channels prior to taking the IDFT

of the filter outputs at time n. Let h0 [n] be a causal low pass filter of length N. This filter

can be decomposed into K polyphase components Ek(z) as (92)

K -I oo

Ho(z) = 1 z-kEk(zK) where Ek(zK) = 1 ho[nK + k]z - K  (I.1)
k=O n=O

In terms of the time domain, the filter coefficients can be written as

n] ho[Kn/F + k] for n = pF for integer p
0  otherwise

Since ek [n] is nonzero only for integer multiples of F the output of each polyphase compo-

nent can be written, without any loss of generality, as

tk[n] = ho[Ki + k]x[Mn - k - Ki] (1.3)
i=O

At time n, the output of the P
th channel is the IDFT of the sequence tk[n] so that

K-1 o

T[l] = yj[n] = E E ho[Ki + k]x[Mn - k - Ki]e 2 7ki/K (1.4)
k=O i=O

This is equivalent to calculating the Short Time Fourier Transform (STFT) of x[n] over the

window w[n] = ho[-n] , overlapped with N-M data points, and evaluating at w = 27rl/K.
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L2 Previous Architecture

As shown in Figure I.la, in the method proposed by Rabiner and Crochiere, the

data is decimated by K, expanded by F, and filtered with K polyphase filters prior to

performing the IDFT on these filter outputs (55). Alternatively, as shown in Figure .l1b,

this implementation is equivalent to partitioning the polyphase filter coefficients into F

separate blocks, indexed by 1 < I < F. Each block is comprised of M separate branches,

indexed by 0 < m < M - 1, with the mt" branch polyphase filter P..(z) given by

p,[n] = h[Mn + m] for n > 0 (1.5)

The kth component of the polyphase representation for 0 < k < K - 1 can be evaluated in

terms of the block index I and the branch index m as k = M(l - 1) + m. The data entering

the mth branch of the Ith block, xi,m[n], is simply the signal x[n] shifted by M(l - 1) + m.

XIm[n] = x[n - M(l - 1) - m) (1.6)

This data is then decimated to produce the sequence

u,,,[n] = x,,[Knl = x[Kn - M(l - 1) - m] (1.7)

Upon expanding by the factor F, the new sequence becomes

,,[n] = f u,[n/F] when n = Fn for integer n(Vl,.n] =(1.8)

1 0 otherwise

Thus, the output of the M th branch of the Ith block can be written as

00

i,m[n] = Z-pm[i vj,[n - i] (1.9)
i=0

Taking into account the F - 1 zeros between the samples of v,m[n] gives

s1,m[n + fl] = [Fi + fi]x[ - Ki - M(l - 1) - ml (I.10)
i=O
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where f=0, 1,.. F - 1 and n = En1 for integer ni. In terms of the prototype filter,

si,m[Ffli + f~] = E h,[Ki + Mf1 + m~x[Kn1 - Ki- M(l - 1) - m] (1.11)
i=O

Since q1,,[n] is just st,mn[f - F + 11, this output can be written as

qi,m[Fni + f, + F - 1] =>ho[Ki + Mf1 + m]x[Kn1 - M(l - 1) - Ki - ml (1.12)

At a specific time, no, the IDFT is performed over the outputs from the polyphase filters.

Then, for time synchronization of each delayed filter output, qm [no],

Fn + f,+ F - I= n (1.13)

for I 1,2...F and f, = 0, 1... F- 1. From the first block, I = 1, of M filter outputs

Fn + f - 1= Fn + f - 1 (1.14)

Since 0 < f, F - 1, then, for time synchronization, n, = n1 + g1F, where

91 0 fo I 
(1.15)f

1 for I >F +i1-fh

so that ft = f, - 1 + I - g1F. The output of the IDFT ps" channel at time no is

F M-1

Qp[no] = Z: E q1,m[noJej3V1M(L-1)+m] (1.16)
1=1 M=O

Conversely, in terms of k, the output of the pth channel of the JDFT can be written as

K-1

Qp[no] =E qk[no] ej
2
1rp/K (1.17)
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L3 Architecture Relationship

This section derives the relationships between the two architectures. From Equa-

tion 1.3, for tk[fn], let k = MfL + m and n = Fn + f, - I + 1. Substitution yields

tM,+,[Fn,+flI +1]= ho[Ki+MfL+mlx[M(Fn,-1+1+fl)-Ki-Mfl-m] (1.18)
i=O

Thus, referring to Equation 1.12, shows

tMf,+, [Ffn + f, - 1 + 1] = qj,,n[Fn + F - I + fl] (1.19)

Making the substitution for no = Fn1 + F - 1 + fi and using Equation 1.15 with I = 1

yields

q.i[,no] = tM(figF)+m[Fn + fi] (1.20)

Using k = M(l - 1) + m gives

q tMfl+k[Fnl + fl for 0 < k < M(F - fi) - 1 (I.21)
I tk-M(F-fj)[Fnj + f] for M(F - fI) < k < K - 1

or equivalently,

qk[no] = tmod(Ml+k)K [fn + fil (1.22)

This shows the outputs of the channels of the K polyphase filters proposed be Rabiner and

Crochiere are time related to the outputs of the new method. At no, with Qp[no] = Qp]

and T[p] = yp[Fn1 + fl], the IDFT output is

K-1 K-1

Q[pl Z q[k]e2kp/K and T[p]= 1 t[k] eI2 -kpK (1.23)
k=O k=O

Using the MODK operation defined by Equation 1.22 gives

Q[p] = e - 2wpMfI/KT[p] (1.24)
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The outputs of the K filter banks introduced by Rabiner and Crochiere are related, via a

time dependent phase term, to the outputs of the nonmaximally decimated UDFT filter

bank.
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Figure 1.1 Conventional Nonmaximally Decimated UDFT Filter Bank
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Appendix J. Phase Noise Analysis

This appendix shows the covariance matrix of the noise introduced to the phase term

of a filtered complex sinusoid will, in general, depend on the frequency of the signal to be

estimated.

Let fv be a zero mean normally distributed complex noise vector with covariance

matrix, kw, derived from M samples of two noise sequences, w, = [w,[M - 1] ... w,[O]]T

for i = R, I so that fi = WR + jw 1 . A single complex sinusoid embedded in this noise be

written as

y[mI = blej(2 1fjm+Oi) + 17[m] = 1,ej 2-f m [1 + [m]] (J.1)

Here [m] = vR[m] + jvl[m] = [biej2#7m] -I zIbm]. Assuming the magnitude, bl, is large

in relation to the magnitude of the noise samples for all m, the magnitude and phase of

[1 + [m]] can be written as

11 + i[mjl = V(1 + vR[m])2 + v,[m12 2 1

L{1 + f[m]} =- tan-{i m} 1 v1,([m]

Now, expanding vx[m] yields

vj[m] 1 [cos(27rflm + ¢&)w,[m] - sin(27rflm + ¢I)wR[m]I (J.3)

For M samples, vi = [vx[M - 11 ... vt[O]]T can be written as

= -Cw - SWRI (J.4)

where C and S are diagonal matrices with

Ci, = cos(27rfi [M - i] + €1) (J.5)

S,, = sin(27rf 1 [M - i] + 01) (J.6)

Since w1 and WR are zero mean, normally distributed random vectors with covariance ma-

trices, Kww1 , KWR,WR, and Kw,,WR, the vector v, is a zero mean, normally distributed
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random vector with covariance matrix

KV, = [1] [CKw1.w,C T - CKw,wRS T - SKwRw, C T + SKwR,WrST ] (J.7)

In general, the covariance matrix of v, is dependent on fl, the frequency to be estimated.

For the special case when wR[m] and wi[m] are uncorrelated and independent random

variables, then

Kww, = Kw R,WR -I (J.8)

KwR W, = Kw,,wR = [01 (J.9)

The covariance matrix, KVr, becomes

Kv= [ ]2[CCT+SST] 1I (J.10)

and is independent of fl.
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